Altered inhibitory function is an important facet of epileptic pathology. A key concept is that
It is now recognized that astrocytes participate in synaptic communication through intimate interactions with neurons. A principal mechanism is through the release of gliotransmitters (GTs) such as ATP, D-serine and most notably, glutamate, in response to astrocytic calcium elevations. We and others have shown that amyloid-β (Aβ), the toxic trigger for Alzheimer’s disease (AD), interacts with hippocampal α7 nicotinic acetylcholine receptors (nAChRs). Since α7nAChRs are highly permeable to calcium and are expressed on hippocampal astrocytes, we investigated whether Aβ could activate astrocytic α7nAChRs in hippocampal slices and induce GT glutamate release. We found that biologically-relevant concentrations of Aβ1-42 elicited α7nAChR-dependent calcium elevations in hippocampal CA1 astrocytes and induced NMDAR-mediated slow inward currents (SICs) in CA1 neurons. In the Tg2576 AD mouse model for Aβ over-production and accumulation, we found that spontaneous astrocytic calcium elevations were of higher frequency compared to wildtype (WT). The frequency and kinetic parameters of AD mice SICs indicated enhanced gliotransmission, possibly due to increased endogenous Aβ observed in this model. Activation of α7nAChRs on WT astrocytes increased spontaneous inward currents on pyramidal neurons while α7nAChRs on astrocytes of AD mice were abrogated. These findings suggest that, at an age that far precedes the emergence of cognitive deficits and plaque deposition, this mouse model for AD-like amyloidosis exhibits augmented astrocytic activity and glutamate GT release suggesting possible repercussions for preclinical AD hippocampal neural networks that contribute to subsequent cognitive decline.
Benzodiazepine-resistant status epilepticus is an ongoing clinical challenge. Burman et al. show that longer seizure duration is a useful clinical indicator of benzodiazepine resistance, and that resistance is caused by changes in GABAA receptor-mediated synaptic transmission. The findings could help optimise current management protocols.
Key points There is a rapid interneuronal response to focal activity in cortex, which restrains laterally propagating activity, including spreading epileptiform activity. The interneuronal response involves intense activation of both parvalbumin‐ and somatostatin‐expressing interneurons. Interneuronal bursting is time‐locked to glutamatergic barrages in the pre‐ictal period. Ca 2+ imaging using conditional expression of GCaMP6f provides an accurate readout of the evolving firing patterns in both types of interneuron. The activation profiles of the two interneuronal classes are temporally offset, with the parvalbumin population being activated first, and typically, at higher rates. Abstract Previous work has described powerful restraints on laterally spreading activity in cortical networks, arising from a rapid feedforward interneuronal response to focal activity. This response is particularly prominent ahead of an ictal wavefront. Parvalbumin‐positive interneurons are considered to be critically involved in this feedforward inhibition, but it is not known what role, if any, is provided by somatostatin‐expressing interneurons, which target the distal dendrites of pyramidal cells. We used a combination of electrophysiology and cell class‐specific Ca 2+ imaging in mouse brain slices bathed in 0 Mg 2+ medium to characterize the activity profiles of pyramidal cells and parvalbumin‐ and somatostatin‐expressing interneurons during epileptiform activation. The GCaMP6f signal strongly correlates with the level of activity for both interneuronal classes. Both interneuronal classes participate in the feedfoward inhibition. This contrasts starkly with the pattern of pyramidal recruitment, which is greatly delayed. During these barrages, both sets of interneurons show intense bursting, at rates up to 300Hz, which is time‐locked to the glutamatergic barrages. The activity of parvalbumin‐expressing interneurons appears to peak early in the pre‐ictal period, and can display depolarizing block during the ictal event. In contrast, somatostatin‐expressing interneuronal activity peaks significantly later, and firing persists throughout the ictal events. Interictal events appear to be very similar to the pre‐ictal period, albeit with slightly lower firing rates. Thus, the inhibitory restraint arises from a coordinated pattern of activity in the two main classes of cortical interneurons.
Much debate exists about how the brain transitions into an epileptic seizure. One source of confusion is that there are likely to be critical differences between experimental seizure models. To address this, we have compared the evolving activity patterns in two widely used in vitro models of epileptic discharges. Brain slices from young adult mice were prepared in the same way and bathed either in 0 Mg2+ or 100 µmol/L 4AP artificial cerebrospinal fluid. We have found that while local field potential recordings of epileptiform discharges in the two models appear broadly similar, patch‐clamp analysis reveals an important difference in the relative degree of glutamatergic involvement. 4AP affects parvalbumin‐expressing interneurons more than other cortical populations, destabilizing their resting state and inducing spontaneous bursting behavior. Consequently, the most prominent pattern of transient discharge (“interictal event”) in this model is almost purely GABAergic, although the transition to seizure‐like events (SLEs) involves pyramidal recruitment. In contrast, interictal discharges in 0 Mg2+ are only maintained by a very large glutamatergic component that also involves transient discharges of the interneurons. Seizure‐like events in 0 Mg2+ have significantly higher power in the high gamma frequency band (60–120Hz) than these events do in 4AP, and are greatly delayed in onset by diazepam, unlike 4AP events. We, therefore, conclude that the 0 Mg2+ and 4AP models display fundamentally different levels of glutamatergic drive, demonstrating how ostensibly similar pathological discharges can arise from different sources. We contend that similar interpretative issues will also be relevant to clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.