SUMMARY Quorum sensing is widely recognized as an efficient mechanism to regulate expression of specific genes responsible for communal behavior in bacteria. Several bacterial phenotypes essential for the successful establishment of symbiotic, pathogenic, or commensal relationships with eukaryotic hosts, including motility, exopolysaccharide production, biofilm formation, and toxin production, are often regulated by quorum sensing. Interestingly, eukaryotes produce quorum-sensing-interfering (QSI) compounds that have a positive or negative influence on the bacterial signaling network. This eukaryotic interference could result in further fine-tuning of bacterial quorum sensing. Furthermore, recent work involving the synthesis of structural homologs to the various quorum-sensing signal molecules has resulted in the development of additional QSI compounds that could be used to control pathogenic bacteria. The creation of transgenic plants that express bacterial quorum-sensing genes is yet another strategy to interfere with bacterial behavior. Further investigation on the manipulation of quorum-sensing systems could provide us with powerful tools against harmful bacteria.
Quorum sensing, the ability of bacteria to sense their own population density through the synthesis and detection of small molecule signals, has received a great deal of attention in recent years. Acyl homoserine lactones (AHLs) are a major class of quorum sensing signaling molecules. In nature, some bacteria that do not synthesize AHLs themselves have developed the ability to degrade these compounds by cleaving the amide bond or the lactone ring. By inactivating this signal used by competing bacteria, the degrading microbe is believed to gain a competitive advantage. In this work we report that CYP102A1, a widely studied cytochrome P450 from Bacillus megaterium, is capable of very efficient oxidation of AHLs and their lactonolysis products acyl homoserines. The previously known substrates for this enzyme, fatty acids, can also be formed in nature by hydrolysis of the amide of AHLs, so CYP102A1 is capable of inactivating the active parent compound and the products of both known pathways for AHL inactivation observed in nature. AHL oxidation primarily takes place at the omega-1, omega-2, and omega-3 carbons of the acyl chain, similar to this enzyme's well-known activity on fatty acids. Acyl homoserines and their lactones are better substrates for CYP102A1 than fatty acids. Bioassay of the quorum sensing activity of oxidation products reveals that the subterminally hydroxylated AHLs exhibit quorum sensing activity, but are 18-fold less active than the parent compound. In vivo, B. megaterium inactivates AHLs by a CYP102A1 dependent mechanism that must involve additional components that further sequester or metabolize the products, eliminating their quorum sensing activity. Cytochrome P450 oxidation of AHLs represents an important new mechanism of quorum quenching.
Sinorhizobium meliloti is a gram-negative soil bacterium, capable of establishing a nitrogen-fixing symbiosis with its legume host, alfalfa (Medicago sativa). Quorum sensing plays a crucial role in this symbiosis, where it influences the nodulation process and the synthesis of the symbiotically important exopolysaccharide II (EPS II). S. meliloti has three quorum-sensing systems (Sin, Tra, and Mel) that use N-acyl homoserine lactones as their quorum-sensing signal molecule. Increasing evidence indicates that certain eukaryotic hosts involved in symbiotic or pathogenic relationships with gram-negative bacteria produce quorum-sensing-interfering (QSI) compounds that can cross-communicate with the bacterial quorum-sensing system. Our studies of alfalfa seed exudates suggested the presence of multiple signal molecules capable of interfering with quorum-sensingregulated gene expression in different bacterial strains. In this work, we choose one of these QSI molecules (SWI) for further characterization. SWI inhibited violacein production, a phenotype that is regulated by quorum sensing in Chromobacterium violaceum. In addition, this signal molecule also inhibits the expression of the S. meliloti exp genes, responsible for the production of EPS II, a quorum-sensing-regulated phenotype. We identified this molecule as L-canavanine, an arginine analog, produced in large quantities by alfalfa and other legumes.
Population-density-dependent gene expression in gram-negative bacteria involves the production of signal molecules characterized as N-acyl homoserine lactones (AHLs). The synthesis of AHLs by numerous microorganisms has been identified by using biosensor strains based on the Agrobacterium tumefaciens and Chromobacterium violaceum quorum-sensing systems. The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti is rapidly becoming a model organism for the study of quorum sensing. This organism harbors at least three different quorum-sensing systems (Sin, Mel, and Tra), which play a role in its symbiotic relationship with its host plant, alfalfa. The Sin system is distinguished among them for the production of long-chain AHLs, including C 18 -HL, the longest AHL reported so far. In this work, we show that construction of a sinI::lacZ transcriptional fusion results in a strain that detects long-chain AHLs with exquisite sensitivity. Overexpression of the SinR regulator protein from a vector promoter increases its sensitivity without loss of specificity. We also show that the resulting indicator strain can recognize long-chain AHLs produced by unrelated bacteria such as Paracoccus denitrificans and Rhodobacter capsulatus. This S. meliloti indicator strain should serve as a tool for the specific detection of long-chain AHLs in new systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.