Biodiesel is an alternative, carbon-neutral fuel compared to fossil-based diesel, which can reduce greenhouse gas (GHGs) emissions. Biodiesel is a product of microorganisms, crop plants, and animal-based oil and has the potential to prosper as a sustainable and renewable energy source and tackle growing energy problems. Biodiesel has a similar composition and combustion properties to fossil diesel and thus can be directly used in internal combustion engines as an energy source at the commercial level. Since biodiesel produced using edible/non-edible crops raises concerns about food vs. fuel, high production cost, monocropping crisis, and unintended environmental effects, such as land utilization patterns, it is essential to explore new approaches, feedstock and technologies to advance the production of biodiesel and maintain its sustainability. Adopting bioengineering methods to produce biodiesel from various sources such as crop plants, yeast, algae, and plant-based waste is one of the recent technologies, which could act as a promising alternative for creating genuinely sustainable, technically feasible, and cost-competitive biodiesel. Advancements in genetic engineering have enhanced lipid production in cellulosic crops and it can be used for biodiesel generation. Bioengineering intervention to produce lipids/fat/oil (TGA) and further their chemical or enzymatic transesterification to accelerate biodiesel production has a great future. Additionally, the valorization of waste and adoption of the biorefinery concept for biodiesel production would make it eco-friendly, cost-effective, energy positive, sustainable and fit for commercialization. A life cycle assessment will not only provide a better understanding of the various approaches for biodiesel production and waste valorization in the biorefinery model to identify the best technique for the production of sustainable biodiesel, but also show a path to draw a new policy for the adoption and commercialization of biodiesel.
In this study, sugarcane bagasse, an abundantly available agro-industrial waste was pyrolyzed into biochar, and activated carbon was produced. Experiments were performed to evaluate the potential of activated biochar carbon as an electrode material in supercapacitor. KOH activated biochar carbon showed a higher surface area of 2336.45 m 2 g -1 . Further electrochemical measurements of the activated carbon show that the material exhibited better performances compared to some of the reported carbon materials derived from biomass, that were utilized in supercapacitor electrodes. The activated carbon electrode showed a high specific capacitance of 197.33 Fg -1 at a scan rate of 1 mVs -1 in 1.5 M KOH electrolyte. Moreover, the electrode displayed good initial capacitance retention, which is 65 % after 1000 cycles. The electrode prepared using non-activated biochar carbon exhibited poor performance and was not considered for any other electrochemical measurements except cyclic voltammetry. The maximum specific capacitance of the non-activated carbon electrode in cyclic voltammetry was found to be 13.88 Fg -1 at a scan rate of 1 mVs -1 . The galvanostatic charge/discharge test of the activated biochar electrode displayed a better chargedischarge mechanism and the GCD curve slightly resembled the ideal triangular shape. Maximum energy and power densities shown by the electrode of activated carbon were 17.57 Whkg -1 and 2.06 kWkg -1 . The high surface area of activated carbon having mesoporous structure is significant for this electrochemical characteristic of the prepared electrode. The study indicates that sugarcane bagasse has the potential to use it as raw material for the preparation of activated biochar carbon for its application in supercapacitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.