The structural characterization of glycans by mass spectrometry is particularly challenging. This is due to the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collisional cross section and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience.
Structure and dynamics regulate protein function, but much less is known about how biomolecule-solvent interactions affect the structure-function relationship. Even less is known about the thermodynamics of biomolecule-solvent interactions and how such interactions influence conformational entropy. When transferred from propanol into 40:60 propanol:water under acidic conditions, a remarkably slow protonation reaction coupled with the conversion of the polyproline-I helix (PPI, having all cis-configured peptide bonds) into polyproline-II (PPII, all trans) helix is observed in this work. Kinetics and equilibrium measurements as a function of temperature allow determination of the thermochemistry and insight into how proton transfer is regulated in this system. For the proton-transfer process, PPI(+)(PrOH) + H3O(+) → PPII(2+)(PrOH/aq) + H2O, we determine ΔG = -20 ± 19 kJ·mol(-1), ΔH = -75 ± 14 kJ·mol(-1), and ΔS= -188 ± 48 J·mol(-1)·K(-1) for the overall reaction, and values of ΔG(⧧) = 91 ± 3 kJ·mol(-1), ΔH(⧧) = 84 ± 9 kJ·mol(-1), and ΔS(⧧) = -23 ± 31 J·mol(-1)·K(-1) for the transition state. For a minor process, PPI(+)(PrOH) → PPII(+)(PrOH/aq) without protonation, we determine ΔG = -9 ± 20 kJ·mol(-1), ΔH = 64 ± 14 kJ·mol(-1), and ΔS= 247 ± 50 J·mol(-1)·K(-1). This thermochemistry yields ΔG = -10 ± 29 kJ·mol(-1), ΔH = -139 ± 20 kJ·mol(-1), and ΔS= -435 ± 70 J·mol(-1)·K(-1) for PPII(+)(PrOH/aq) + H3O(+) → PPII(2+)(PrOH/aq) +H2O. The extraordinarily slow proton transfer appears to be an outcome of configurational coupling through a PPI-like transition state.
We combine ion mobility spectrometry with cryogenic, messenger-tagging, infrared spectroscopy and mass spectrometry to identify different isomeric disaccharides of chondroitin sulfate (CS) and heparan sulfate (HS), which are representatives of two major subclasses of glycosaminoglycans. Our analysis shows that while CS and HS disaccharide isomers have similar drift times, they can be uniquely distinguished by their vibrational spectrum between ~3200 and 3700 cm−1 due to their different OH hydrogen-bonding patterns. We suggest that this combination of techniques is well suited to identify and characterize glycan isomers directly, which presents tremendous challenges for existing methods.
We report here our combination of cryogenic, messenger-tagging, infrared (IR) spectroscopy with ion mobility spectrometry (IMS) and mass spectrometry (MS) as a way to identify and analyze a set of human milk oligosaccharides (HMOs) ranging from trisaccharides to hexasaccharides. The added dimension of IR spectroscopy provides a diagnostic fingerprint in the OH and NH stretching region, which is crucial to identify these oligosaccharides, which are difficult to distinguish by IMS alone. These results extend our previous work in demonstrating the generality of this combined approach for distinguishing subtly different structural and regioisomers of glycans of biologically relevant size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.