Observations on above ground litter decomposition and nutrient release in alpine ecosystem of the Himalaya were carried out. Monthly variation was observed for above ground litter crop and it was higher in the protected sites (PR) when compared with unprotected sites (UNPR). Turnover rate (TR) and time (TT) was also higher in PR sites and it corresponded to maximum net accumulation of standing dead and litter biomass. This resulted into low litter disappearance and therefore, low nutrient fluxes as well. Comparatively, potassium content was a maximum followed by N and OC in above ground crop of litter with significant variation among the sites (P \ 0.001 and 0.005, respectively). It was observed that only 9-12% litter of various categories was decomposed annually at the rate of 0.1-0.13%. Overall, decomposition process was a maximum during active growth season and only 13.2-16.2% of total litter was decomposed during the winter months (December-March). Release of OC and NPK to soil organic matter through the decomposition of various litter types was also observed and the pattern of release was similar to that of disappearance channel. All these parameters are reported and possible reasons are described in the present paper.
The present study was conducted in the alpine pastures of Tungnath (30° 14' N and 79° 13' E) to observe life-form and growth-form patterns of alpine plant species under grazed and ungrazed conditions and to work out the plant life form spectrum. Species were categorized as plant habit, height and length of growth-cycle and life-form classes according to Raunkiaer's system. The results show that in total of 68 species at grazed site, hemicryptophytes (He) accounted for 50.00% species, followed by cryptophytes (26.47%), chamaephytes (16.18%), phanerophytes (4.41%) and therophytes (2.94%). At the ungrazed site in 65 plant species, hemicryptophytes (He) accounted for 49.23% species, cryptophytes (26.15%), chamaephytes (15.38%), phanerophytes (6.15%) and therophytes (3.08 % species). In general, hemicrptophyte are dominant in both sites i.e. graged and ungrazed. Growth form categories were classified as forbs, shrubs, grasses and sedges and undershrubs, according to plant habit and height. On the basis of length of the growth cycle, species were categorized as plant species of short growth cycle, intermediate growth cycle and long growth cycle. The short forbs of plant habit and height, had the highest emergence, and grasses and sedges had the lowest emergence in representative species. Percentage of species with long growth cycle was highest in both sites.
This work was undertaken to analyze nutrient contents of vegetation in an alpine meadow-Tungnath, North-West Himalaya, India. The study pertains to the uptake, transfer and release of four main macronutrients (organic carbon, total nitrogen, total potassium and total phosphorus) in grazed (exposed to extensive grazing by cattles) and ungrazed (grazing completely prohibited) communities. Mineral concentration was recorded higher for the ungrazed sites compared to the grazed sites, and maximum standing state of nutrients was found in roots. Belowground compartment (roots) contributed maximum share of mineral elements to soil. Litter nutrients release was low because of low microbial activity and continuous removal of phytomass. Observations reveal that there was very little amount of nutrient release from phytomass and vegetation in alpine are very poor source of mineral recycling. Low transfer rate of minerals from one compartment to other is adequate for greater amount of these minerals that are translocated back into the storage organs. A small proportion get removed through rain splash or through the removal of hay during grazing as relatively high release rates in ungrazed sites when compared to grazed sites was observed. This translocation can be considered as an important adaptation in alpine plants for survival during adverse environmental conditions, against all types of biotic pressures and also for regeneration in the forthcoming growing season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.