Object. The goal of this study was to establish a biomathematical model to accurately predict the probability of aneurysm rupture. Biomathematical models incorporate various physical and dynamic phenomena that provide insight into why certain aneurysms grow or rupture. Prior studies have demonstrated that regression models may determine which parameters of an aneurysm contribute to rupture. In this study, the authors derived a modified binary logistic regression model and then validated it in a distinct cohort of patients to assess the model's stability.Methods. Patients were examined with CT angiography. Three-dimensional reconstructions were generated and aneurysm height, width, and neck size were obtained in 2 orthogonal planes. Forward stepwise binary logistic regression was performed and then applied to a prospective cohort of 49 aneurysms in 37 patients (not included in the original derivation of the equation) to determine the log-odds of rupture for this aneurysm.Results. A total of 279 aneurysms (156 ruptured and 123 unruptured) were observed in 217 patients. Four of 6 linear dimensions and the aspect ratio were significantly larger (each with p < 0.01) in ruptured aneurysms than unruptured aneurysms. Calculated volume and aneurysm location were correlated with rupture risk. Binary logistic regression applied to an independent prospective cohort demonstrated the model's stability, showing 83% sensitivity and 80% accuracy.Conclusions. This binary logistic regression model of aneurysm rupture identified the status of an aneurysm with good accuracy. The use of this technique and its validation suggests that biomorphometric data and their relationships may be valuable in determining the status of an aneurysm. (DOI: 10.3171/2008.5.17558) Key WorDs • binary logistic regression • cerebral aneurysm • subarachnoid hemorrhage 1 Abbreviations used in this paper: ACoA = anterior communicating artery; BA = basilar artery; ICA = internal carotid artery; MCA = middle cerebral artery; PCoA = posterior communicating artery; SAH = subarachnoid hemorrhage.
The eosinophilic vasculitis seen in the pathology specimens may represent a previously undocumented hypersensitivity reaction following exposure to n-BCA, with the potential for adverse sequelae, including increased risk of hemorrhage as was seen in one of our patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.