INTRODUCTION:Urinary tract infections (UTIs) are the most common infectious diseases occurring in either the community or healthcare setting. Turnaround time for urine culture is about 24 h, and antimicrobial susceptibility testing (AST) requires another 24 h. Consequently, initial antibiotic therapy is mostly empirical.MATERIALS AND METHODS:This study was conducted at Nizam's Institute of Medical Sciences, Hyderabad. Turbid urine samples which showed pus cells and Gram-negative (GN) bacilli of single morphotype were included. The turbidity of the urine was adjusted to 0.5 McFarland and uploaded directly in the VITEK 2 identification (ID) GN and N-280 panel for AST. The specimen was also inoculated on CHROMagar, and the ID and AST of the isolates from the agar plate were repeated on VITEK 2, and the results were compared.RESULTS:Out of 844 turbid urines screened, 62 met the inclusion criteria. Escherichia coli was the most common isolate (71.9%). Complete agreement for ID was 80.7%, misidentified were 12.2%, and unidentified were 7%. Complete agreement with AST was 94.3%, very major errors 0.5%, major errors 2.2%, and minor errors 3%.CONCLUSION:With a 94.3% agreement for AST and a reduced turnaround time by 24 h, the direct inoculation had a potential clinical benefit for initiating timely and appropriate antibiotic therapy for UTI.
Background: Nontuberculosis mycobacterium (NTM) is the emerging group of organisms being recognized as etiological agents for diverse clinical conditions such as lymphadenitis, cutaneous, and pulmonary or disseminated lesions. Diverse background patients can acquire these infections such as immunocompetent, immunocompromised patients, or postoperative settings. Rapid addition of newer strains to this group necessitates heightened suspicion in the clinical settings. Specific requirements for cultures, biochemical testing, and molecular methods are needed to diagnose these organisms. Methods: The prospective study conducted at Nizam's Institute of Medical Sciences from January 2019 to December 2021 using various clinical samples using molecular techniques such as line probe assay and hsp-65 gene sequencing to discover new NTM species. The management is challenging since it requires prolonged treatment, multiple drugs, drug resistance, and individualization of treatment in the combination of surgery if needed. In this article, we describe three different NTM species which were not reported in India and highlight to consider these organisms in adequate clinical situation. Results: Mycobacterium iranicum is a rare strain with quick growth and scotochromogenic colonies that are orange-colored. Eight distinct strains were discovered in clinical samples from six different countries: Two each from Iran, Italy, Greece, the Netherlands, Sweden, and the United States. Two of the strains were recovered from cerebrospinal fluid, which is unusual. Mycobacterium species AW6 is an unidentified and unclassified Mycobacterium according to NCBI taxonomy. Mycobacteria malmoense has been linked to lymphadenitis, notably cervical adenitis in children, and pulmonary infection in the majority of cases. Using Line Probe Assay and hsp-65 gene sequencing, novel and uncommon species of NTM were detected from a clinical samples, including sputum and tissue. Conclusion: We report three unusual species of NTMs: M. iranicum, M. species-AW6, and M. malmoense for the first time in India. Novel and rare emerging species of NTMs need to be considered in diverse clinical situations for appropriate therapy and good clinical outcomes.
Introduction: Non-tuberculous Mycobacteria (NTM) pulmonary disease is often unrecognised or misdiagnosed as Mycobacterium tuberculosis (MTB), Multi-Drug Resistant Tuberculosis (MDRTB), because of similar clinical presentation in counties with high burden of Tuberculosis (TB) including India. In India due to lack of awareness among clinicians and lack of laboratory facilities to diagnose these infections, its prevalence is largely unknown. Aim: To evaluate the efficacy of identification of NTM species by Matrix Assisted Laser Desorption Ionisation Time of Flight (MALDI-TOF) and Heat Shock Protein (hSP65) gene sequencing and to determine their Antimicrobial Susceptibility Testing (AST). Materials and Methods: All the clinical specimens from pulmonary and extra-pulmonary TB suspects at Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, India, over a period of one year i.e., from June 2017 to May 2018 were included in the study. The specimens were subjected to microscopy, culture and GeneXpert. The NTMs isolated in the culture were further characterised genotypically by MALDI-TOF and hsp65 gene sequencing. The identified NTM isolates were subjected to AST. All the methods were followed as per the standard protocols. Data was analysed using SPSS 25. Results: A total of 1085 samples were processed out of which Mycobacteria was detected in 201 cases (18.5%). Among the culture positives, MTB complex was detected in 146 cases (13.5%) and NTM in 55 (5.06%). Mycobacterium abscessus was the predominant isolate. The most common co-morbidities were bronchiectasis and Chronic Obstructive Pulmonary Disease (COPD). Linezolid, clarithromycin, moxifloxacin and amikacin showed high sensitivity. Conclusion: Molecular assay helps in rapid identification which can lead to targeted therapy and can thus combat antimicrobial resistance. The MALDI-TOF and hsp65 gene sequencing also offers quick results at a low cost and is easy to perform hence it can be considered as an alternate diagnostic tool for identification.
Article Subject: Medical Microbiology 10.30699/ijmm.13.3.172 Background and Aims: Tuberculosis kills more than 1 million people every year, most of them in low-income and middle-income countries. An understanding of the trends in tuberculosis incidence, prevalence, and mortality s crucial to track the success of tuberculosis control programs. Microbiological diagnosis of diseases caused by Mycobacteria should be fast and effective to prevent contagions and optimize the management of infections. Materials and Methods: A total of 1412 clinical pulmonary and extra pulmonary specimens were studied from January 2017 to December 2017 at Nizam's Institute of Medical Sciences, Hyderabad. All specimens were processed according to standard operating procedures. All the specimens were subjected to microscopy, culture, GeneXpert. Results: Among 1412 samples received 813 were males (57.6%) and 599 females (42.4%). Among these 818 (57.9%) were pulmonary samples and 594 extra pulmonary samples. Mycobacterium prevalence was (21.6%) out of which Mycobacterium tuberculosis was found in 18.3% and Non tuberculous Mycobacteria (3.25%). The contamination rate was 2.6% (37 out of 1412). Among the positives, the most common affected age group was 21-30 yrs (22.2%). About 64 (4.53%) were smear positive. A total of 200 isolates (14.16%) were recovered by at least one culture LJ medium or BacT Alert 3D system. MTB was recovered in 216 (15.29%) by GeneXpert. MDRTB was detected in 8 (3.7%) by GeneXpert. Conclusion: Mycobacterium tuberculosis complex is responsible for immense worldwide morbidity and mortality. Delays in diagnosis may postpone administration of appropriate treatment and be detrimental to patient outcomes. Since traditional culture methods are slow, newer molecular techniques allow more rapid and sensitive laboratory diagnosis of tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.