Inflammation of the female reproductive tract increases susceptibility to HIV-1 and other viral infections and, thus, it becomes a serious liability for vaginal products. Excessive release of proinflammatory cytokines may alter the mucosal balance between tissue destruction and repair and be linked to enhanced penetration and replication of viral pathogens upon chemical insult. The present study evaluates four surface-active microbicide candidates, nonoxynol-9 (N-9), benzalkonium chloride (BZK), sodium dodecyl sulfate, and sodium monolaurate for their activity against human sperm and HIV, and their capacity to induce an inflammatory response on human vaginal epithelial cells and by the rabbit vaginal mucosa. Spermicidal and virucidal evaluations ranked N-9 as the most potent compound but were unable to predict the impact of the compounds on vaginal cell viability. Interleukin (IL)-1 release in vitro reflected their cytotoxicity profiles more accurately. Furthermore, IL-1 concentrations in vaginal washings correlated with cumulative mucosal irritation scores after single and multiple applications (P < 0.01), showing BZK as the most damaging agent for the vaginal mucosa. BZK induced rapid cell death, IL-1 release, and IL-6 secretion. The other compounds required either more prolonged or repeated contact with the vaginal epithelium to induce a significant inflammatory reaction. Increased IL-8 levels after multiple applications in vivo identified compounds with the highest cumulative mucosal toxicity (P < 0.01). In conclusion, IL-1, IL-6, and IL-8 in the vaginal secretions are sensitive indicators of compound-induced mucosal toxicity. The described evaluation system is a valuable tool in identifying novel vaginal contraceptive microbicides, selecting out candidates that may enhance, rather than decrease, HIV transmission.
A vaginal gel containing the antiretroviral tenofovir (TFV) recently demonstrated 39% protection against HIV infection in women. We designed and evaluated a novel reservoir TFV intravaginal ring (IVR) to potentially improve product effectiveness by providing a more controlled and sustained vaginal dose to maintain cervicovaginal concentrations. Polyurethane tubing of various hydrophilicities was filled with a high-density TFV/glycerol/water semisolid paste and then end-sealed to create IVRs. In vitro, TFV release increased with polyurethane hydrophilicity, with 35 weight percent water-swelling polyurethane IVRs achieving an approximately 10-mg/day release for 90 days with mechanical stiffness similar to that of the commercially available NuvaRing. This design was evaluated in two 90-day in vivo sheep studies for TFV pharmacokinetics and safety. Overall, TFV vaginal tissue, vaginal fluid, and plasma levels were relatively time independent over the 90-day duration at approximately 10 4 ng/g, 10 6 ng/g, and 10 1 ng/ml, respectively, near or exceeding the highest observed concentrations in a TFV 1% gel control group. TFV vaginal fluid concentrations were approximately 1,000-fold greater than levels shown to provide significant protection in women using the TFV 1% gel. There were no toxicological findings following placebo and TFV IVR treatment for 28 or 90 days, although slight to moderate increases in inflammatory infiltrates in the vaginal epithelia were observed in these animals compared to naïve animals. In summary, the controlled release of TFV from this reservoir IVR provided elevated sheep vaginal concentrations for 90 days to merit its further evaluation as an HIV prophylactic. R ecent progress in antiretroviral HIV prevention research has advanced the field from concept toward medical practice (46). The CAPRISA 004 study demonstrated that a vaginal gel containing the reverse transcriptase inhibitor tenofovir (TFV) was partially effective in preventing HIV transmission in women (1), with significant protection observed in women who maintained preventative TFV concentrations of at least 1,000 ng/ml in vaginal fluid (23). However, the overall effectiveness (39%) was likely reduced by poor user adherence to the inconvenient before-andafter-sex dosing regimen. The correlation of adherence and TFV vaginal fluid concentrations to protection was a key finding (23,24), indicating the need for vaginal drug delivery systems that attain and maintain elevated user adherence and vaginal drug concentrations. More recently, the VOICE trial tested the same TFV 1% gel formulation as CAPRISA 004 but with a once-daily dosage regimen and failed to show any effectiveness in women. Here, as well, low adherence may have contributed to the gel's inability to prevent HIV transmission (54). As a result, we (6, 21) and others (4,35,36,44,49) aim to develop TFV drug delivery systems to provide sustained protective vaginal tissue concentrations and potentially increase user adherence.The micromolar anti-HIV activity of TFV motivated sel...
The relationship between exogenous contraceptive hormones and permissiveness of the female genital tract to human immunodeficiency virus type 1 (HIV-1) is the subject of renewed debate. To better characterize the effect of depot medroxyprogesterone acetate (DMPA) on HIV-1 cellular targets and epithelial integrity in the vagina, we compared leukocyte populations, markers of activation and proliferation, and the density of intercellular junctional proteins in the vaginal epithelium of women during the follicular and luteal phases of the menstrual cycle and approximately 12 weeks after receiving a DMPA injection. This prospective cohort study involved 15 healthy women. Vaginal biopsies were obtained in the follicular and luteal phases of the menstrual cycle, and approximately 12 weeks following a 150-mg intramuscular injection of DMPA. Leukocyte populations, activation phenotype, and epithelial tight junction and adherens proteins were evaluated by immunohistochemistry. After receiving DMPA, the numbers of CD45, CD3, CD8, CD68, HLA-DR, and CCR5 bearing immune cells were significantly ( p < 0.05) increased in vaginal tissues, compared to the follicular and/or luteal phases of untreated cycles. There were no significant differences in immune cell populations between the follicular and luteal phases of the control cycle. There were also no statistically significant differences in epithelial thickness and density of epithelial tight junction and adherens proteins among the follicular, luteal, and post-DMPA treatment sampling points. In this pilot study, vaginal immune cell populations were significantly altered by exogenous progesterone, resulting in increased numbers of T cells, macrophages, and HLA-DR-and CCR5-positive cells.
To prevent the global health burdens of human immunodeficiency virus [HIV] and unintended/mistimed pregnancies, we developed an intravaginal ring [IVR] that delivers tenofovir [TFV] at ~10mg/day alone or with levonorgestrel [LNG] at ~20μg/day for 90 days. We present safety, pharmacokinetics, pharmacodynamics, acceptability and drug release data in healthy women. CONRAD A13-128 was a randomized, placebo controlled phase I study. We screened 86 women; 51 were randomized to TFV, TFV/LNG or placebo IVR [2:2:1] and 50 completed all visits, using the IVR for approximately 15 days. We assessed safety by adverse events, colposcopy, vaginal microbiota, epithelial integrity, mucosal histology and immune cell numbers and phenotype, cervicovaginal [CV] cytokines and antimicrobial proteins and changes in systemic laboratory measurements, and LNG and TFV pharmacokinetics in multiple compartments. TFV pharmacodynamic activity was measured by evaluating CV fluid [CVF] and tissue for antiviral activity using in vitro models. LNG pharmacodynamic assessments were timed based on peak urinary luteinizing hormone levels. All IVRs were safe with no significant colposcopic, mucosal, immune and microbiota changes and were acceptable. Among TFV containing IVR users, median and mean CV aspirate TFV concentrations remained above 100,000 ng/mL 4 hours post IVR insertion and mean TFV-diphosphate [DP] concentrations in vaginal tissue remained above 1,000 fmol/mg even 3 days post IVR removal. CVF of women using TFV-containing IVRs completely inhibited [94–100%] HIV infection in vitro. TFV/LNG IVR users had mean serum LNG concentrations exceeding 300 pg/mL within 1 hour, remaining high throughout IVR use. All LNG IVR users had a cervical mucus Insler score <10 and the majority [95%] were anovulatory or had abnormal cervical mucus sperm penetration. Estimated in vivo TFV and LNG release rates were within expected ranges. All IVRs were safe with the active ones delivering sustained high concentrations of TFV locally. LNG caused changes in cervical mucus, sperm penetration, and ovulation compatible with contraceptive efficacy. The TFV and TFV/LNG rings are ready for expanded 90 day clinical testing.Trial registration ClinicalTrials.gov #NCT02235662
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.