Fact-checking is the task of verifying the veracity of claims by assessing their assertions against credible evidence. The vast majority of fact-checking studies focus exclusively on political claims. Very little research explores fact-checking for other topics, specifically subject matters for which expertise is required. We present the first study of explainable fact-checking for claims which require specific expertise. For our case study we choose the setting of public health. To support this case study we construct a new dataset PUBHEALTH of 11.8K claims accompanied by journalist crafted, gold standard explanations (i.e., judgments) to support the fact-check labels for claims 1 . We explore two tasks: veracity prediction and explanation generation. We also define and evaluate, with humans and computationally, three coherence properties of explanation quality. Our results indicate that, by training on in-domain data, gains can be made in explainable, automated fact-checking for claims which require specific expertise.Table 9: These are the four standardized labels we defined for veracity prediction (left) and lists (right) of the original fact-checking labels provided by the fact-checking and news review websites we scraped, mapped to our four standardized labels .
A number of exciting advances have been made in automated fact-checking thanks to increasingly larger datasets and more powerful systems, leading to improvements in the complexity of claims which can be accurately fact-checked. However, despite these advances, there are still desirable functionalities missing from the fact-checking pipeline. In this survey, we focus on the explanation functionality -that is fact-checking systems providing reasons for their predictions. We summarize existing methods for explaining the predictions of fact-checking systems and we explore trends in this topic. Further, we consider what makes for good explanations in this specific domain through a comparative analysis of existing fact-checking explanations against some desirable properties. Finally, we propose further research directions for generating fact-checking explanations, and describe how these may lead to improvements in the research area.
Stance detection plays a pivot role in fake news detection. The task involves determining the point of view or stance-for or against-a text takes towards a claim. One very important stage in employing stance detection for fake news detection is the aggregation of multiple stance labels from different text sources in order to compute a prediction for the veracity of a claim. Typically, aggregation is treated as a credibility-weighted average of stance predictions. In this work, we take the novel approach of applying, for aggregation, a gradual argumentation semantics to bipolar argumentation frameworks mined using stance detection. Our empirical evaluation shows that our method results in more accurate veracity predictions.
This paper presents an end-to-end system for fact extraction and verification using textual and tabular evidence, the performance of which we demonstrate on the FEVEROUS dataset. We experiment with both a multi-task learning paradigm to jointly train a graph attention network for both the task of evidence extraction and veracity prediction, as well as a single objective graph model for solely learning veracity prediction and separate evidence extraction. In both instances, we employ a framework for per-cell linearization of tabular evidence, thus allowing us to treat evidence from tables as sequences. The templates we employ for linearizing tables capture the context as well as the content of table data. We furthermore provide a case study to show the interpretability our approach. Our best performing system achieves a FEVEROUS score of 0.23 and 53% label accuracy on the blind test data. 1 * Work done while the author was an intern at J.P. Morgan AI Research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.