Objectives Exosomes are 50-90 nm extracellular membrane particles that may mediate trans-cellular communication between cells and tissues. We have reported that human urinary exosomes contain miRNA that are biomarkers for salt sensitivity and inverse salt sensitivity of blood pressure. This study examines exosomal transfer between cultured human renal proximal tubule cells (RPTCs) and from RPTCs to human distal tubule and collecting duct cells. Design and methods For RPTC-to-RPTC exosomal transfer, we utilized 5 RPTC lines producing exosomes that were fluorescently labeled with exosomal-specific markers CD63-EGFP or CD9-RFP. Transfer between RPTCs was demonstrated by co-culturing CD63-EGFP and CD9-RFP stable clones and performing live confocal microscopy. For RPTC-to-distal segment exosomal transfer, we utilized 5 distal tubule and 3 collecting duct immortalized cell lines. Results Time-lapse videos revealed unique proximal tubule cellular uptake patterns for exosomes and eventual accumulation into the multi-vesicular body. Using culture supernatant containing exosomes from 3 CD9-RFP and 2 CD63-EGFP RPTC cell lines, all 5 distal tubule cell lines and all 3 collecting duct cell lines showed exosomal uptake as measured by microplate fluorometry. Furthermore, we found that RPTCs stimulated with fenoldopam (dopamine receptor agonist) had increased production of exosomes, which upon transfer to distal tubule and collecting duct cells, reduced the basal reactive oxygen species (ROS) production rates in those recipient cells. Conclusion Due to the complex diversity of exosomal contents, this proximal-to-distal vesicular inter-nephron transfer may represent a previously unrecognized trans-renal communication system.
Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells (RPTCs), sodium reabsorption is decreased by the dopamine D1-like receptors (D1R/D5R) and the angiotensin type 2 receptor (AT2R), while the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and subsequently hypertension. We show that D1R/D5R stimulation increased plasma membrane AT2R 4-fold via a D1R-mediated, cAMP-coupled, and PP2A-dependent specific signaling pathway. D1R/D5R stimulation also reduced the ability of angiotensin II to stimulate phospho-ERK, an effect that was partially reversed by an AT2R antagonist. Fenoldopam did not increase AT2R recruitment in RPTCs with D1Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D1Rs and AT2Rs heterodimerized and cooperatively increased cAMP and cGMP production, PP2A activation, sodium-potassium-ATPase internalization and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.