The design and development of water dispersible, pH responsive peptide mimic shell cross‐linked magnetic nanocarriers (PMNCs) using a facile soft‐chemical approach is reported. These nanocarriers have an average size about 10 nm, are resistant to protein adsorption in physiological medium, and transform from a negatively charged to a positively charged form in the acidic environment. The terminal amino acid on the shell of the magnetic nanocarriers allows us to create functionalized exteriors with high densities of organic moieties (both amine and carboxyl) for conjugation of drug molecules. The drug‐loading efficiency of the nanocarriers is investigated using doxorubicin hydrochloride (DOX) as a model drug to evaluate their potential as a carrier system. Results show high loading affinity of nanocarriers for anticancer drug, their sustained release profile, magnetic‐field‐induced heating, and substantial cellular internalization. Moreover, the enhanced toxicity to tumor cells by DOX‐loaded PMNCs (DOX‐PMNCs) under an AC magntic field suggest their potential for combination therapy involving hyperthermia and chemotherapy.
Magnetic nanoparticles based hyperthermia therapy is a possible low cost and effective technique for killing cancer tissues in the human body. Fe3O4 and Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles are prepared by co-precipitation method and their average particle sizes are found to be ∼10 and 25 nm, respectively. The particles are spherical, non-agglomerated and highly dispersible in water. The crystallinity of as-prepared YPO4:5Eu sample is more than Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles. The chemical bonds interaction between Fe3O4 and YPO4:5Eu is confirmed through FeO-P. The magnetization of hybrid nanocomposite shows magnetization Ms = 11.1 emu g(-1) with zero coercivity (measured at 2 × 10(-4) Oe) at room temperature indicating superparamagnetic behaviour. They attain hyperthermia temperature (~42 °C) under AC magnetic field showing characteristic induction heating of the prepared nanohybrid and they will be potential material for biological application. Samples produce the red emission peaks at 618 nm and 695 nm, which are in range of biological window. The quantum yield of YPO4:5Eu sample is found to be 12%. Eu(3+) present on surface and core could be distinguished from luminescence decay study. Very high specific absorption rate up to 100 W g(-1) could be achieved. The intracellular uptake of nanocomposites is found in mouse fibrosarcoma (Wehi 164) tumor cells by Prussian blue staining.
Superparamagnetic Fe3O4 nanoparticles are appealing materials for heat activated killing of cancer cells. Here, we report a novel method to enhance the heat activated killing of cancer cells under an AC magnetic field (AMF) by introducing a polyaniline impregnated shell onto the surface of Fe3O4 nanoparticles. These polyaniline shell cross-linked magnetic nanoparticles (PSMN) were prepared by in situ polymerization of aniline hydrochloride on the surface of carboxyl PEGylated Fe3O4 nanoparticles. XRD and TEM analyses revealed the formation of single phase inverse spinel Fe3O4 nanoparticles of a size of about 10 nm. The successful growth of the polyaniline shell on the surface of carboxyl PEGylated magnetic nanoparticles (CPMN) is evident from FTIR spectra, DLS, TGA, zeta-potential and magnetic measurements. Both CPMN and PSMN show good colloidal stability, superparamagnetic behavior at room temperature and excellent heating efficacy under AMF. It has been observed that the heating efficacy of PSMN under AMF was slightly reduced as compared to that of CPMN. The enhanced toxicity of PSMN to cancer cells under AMF suggests their strong potential for magnetic hyperthermia. Furthermore, PSMN shows high loading affinity for an anticancer drug (doxorubicin), its sustained release and substantial internalization in tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.