Hydroxychloroquine and chloroquine are medications that have been used for a long time. Their most common use is for the treatment and prophylaxis of malaria. However, these antimalarial drugs are known to also have anti-inflammatory and antiviral effects and are used for several chronic diseases such as systemic lupus erythematosus with low adverse effects. The antiviral action of hydroxychloroquine and chloroquine has been a point of interest to different researchers due to its mechanism of action. Several in vitro studies have proven their effectiveness on severe acute respiratory syndrome virus and currently both in vitro and in vivo studies have been conducted on 2019 novel coronavirus (covid-19). The purpose of this article is to review the history and mechanism of actions of these drugs and the potential use they can have on the current covid-19 pandemic.
BackgroundIron deficiency anemia is the most common form of anemia in India. Hemoglobin A1c (HbA1c) is used in diabetic patients as an index of glycemic control reflecting glucose levels of the previous 3 months. Like blood sugar levels, HbA1c levels are also affected by the presence of variant hemoglobins, hemolytic anemias, nutritional anemias, uremia, pregnancy, and acute blood loss. However, reports on the effects of iron deficiency anemia on HbA1c levels are inconsistent. We conducted a study to analyze the effects of iron deficiency anemia on HbA1c levels and to assess whether treatment of iron deficiency anemia affects HbA1c levels.MethodsFifty patients confirmed to have iron deficiency anemia were enrolled in this study. HbA1c and absolute HbA1c levels were measured both at baseline and at 2 months after treatment, and these values were compared with those in the control population.ResultsThe mean baseline HbA1c level in anemic patients (4.6%) was significantly lower than that in the control group (5.5%, p<0.05). A significant increase was observed in the patients' absolute HbA1c levels at 2 months after treatment (0.29 g/dL vs. 0.73 g/dL, p<0.01). There was a significant difference between the baseline values of patients and controls (0.29 g/dL vs. 0.74 g/dL, p<0.01).ConclusionsIn contrast to the observations of previous studies, ours showed that HbA1c levels and absolute HbA1c levels increased with treatment of iron deficiency anemia. This could be attributable to nutritional deficiency and/or certain unknown variables. Further studies are warranted.
BACKGROUND AND PURPOSEGroup III pulmonary hypertension (PH) is a highly lethal and widespread lung disorder that is a common complication in idiopathic pulmonary fibrosis (IPF) where it is considered to be the single most significant predictor of mortality. While increased levels of hyaluronan have been observed in IPF patients, hyaluronan-mediated vascular remodelling and the hyaluronanmediated mechanisms promoting PH associated with IPF are not fully understood. EXPERIMENTAL APPROACHExplanted lung tissue from patients with IPF with and without a diagnosis of PH was used to identify increased levels of hyaluronan. In addition, an experimental model of lung fibrosis and PH was used to test the capacity of 4-methylumbeliferone (4MU), a hyaluronan synthase inhibitor to attenuate PH. Human pulmonary artery smooth muscle cells (PASMC) were used to identify the hyaluronan-specific mechanisms that lead to the development of PH associated with lung fibrosis. KEY RESULTSIn patients with IPF and PH, increased levels of hyaluronan and expression of hyaluronan synthase genes are present. Interestingly, we also report increased levels of hyaluronidases in patients with IPF and IPF with PH. Remarkably, our data also show that 4MU is able to inhibit PH in our model either prophylactically or therapeutically, without affecting fibrosis. Studies to determine the hyaluronan-specific mechanisms revealed that hyaluronan fragments result in increased PASMC stiffness and proliferation but reduced cell motility in a RhoA-dependent manner. CONCLUSIONS AND IMPLICATIONSTaken together, our results show evidence of a unique mechanism contributing to PH in the context of lung fibrosis. Abbreviations4MU, 4-methylumbelliferone; GEFT, guanine nucleotide exchange factor 25; HABP2, hyaluronan-binding protein 2; HAS, hyaluronan synthase; HYAL, hyaluronidase; IF, immunofluorescence; IHC, immunohistochemistry; IPF, idiopathic pulmonary fibrosis; LVSP, left ventricle systolic pressure; mPAP, mean pulmonary arterial pressure; PASMC, pulmonary artery smooth muscle cell; PH, pulmonary hypertension; RVH, right ventricle hypertrophy; RVSP, right ventricle systolic pressure; αSMA, α-smooth muscle actin
Idiopathic pulmonary fibrosis (IPF) is a deadly chronic lung disease. Extracellular accumulation of adenosine and subsequent activation of the ADORA2B receptor play important roles in regulating inflammation and fibrosis in IPF. Additionally, alternatively activated macrophages (AAMs) expressing ADORA2B have been implicated in mediating adenosine's effects in IPF. Although hypoxic conditions are present in IPF, hypoxia's role as a direct modulator of macrophage phenotype and identification of factors that regulate ADORA2B expression on AAMs in IPF is not well understood. In this study, an experimental mouse model of pulmonary fibrosis and lung samples from patients with IPF were used to examine the effects and interactions of macrophage differentiation and hypoxia on fibrosis. We demonstrate that hypoxia-inducible factor 1-α (HIF1A) inhibition in late stages of bleomycin-induced injury attenuates pulmonary fibrosis in association, with reductions in ADORA2B expression in AAMs. Additionally, ADORA2B deletion or pharmacological antagonism along with HIF1A inhibition disrupts AAM differentiation and subsequent IL-6 production in cultured macrophages. These findings suggest that hypoxia, through HIF1A, contributes to the development and progression of pulmonary fibrosis through its regulation of ADORA2B expression on AAMs, cell differentiation, and production of profibrotic mediators. These studies support a potential role for HIF1A or ADORA2B antagonists in the treatment of IPF.-Philip, K., Mills, T. W., Davies, J., Chen, N.-Y., Karmouty-Quintana, H., Luo, F., Molina, J. G., Amione-Guerra, J., Sinha, N., Guha, A., Eltzschig, H. K., Blackburn, M. R. HIF1A up-regulates the ADORA2B receptor on alternatively activated macrophages and contributes to pulmonary fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.