We have analyzed the maize leaf transcriptome using Illumina sequencing. We mapped more than 120 million reads to define gene structure and alternative splicing events and to quantify transcript abundance along a leaf developmental gradient and in mature bundle sheath and mesophyll cells. We detected differential mRNA processing events for most maize genes. We found that 64% and 21% of genes were differentially expressed along the developmental gradient and between bundle sheath and mesophyll cells, respectively. We implemented Gbrowse, an electronic fluorescent pictograph browser, and created a two-cell biochemical pathway viewer to visualize datasets. Cluster analysis of the data revealed a dynamic transcriptome, with transcripts for primary cell wall and basic cellular metabolism at the leaf base transitioning to transcripts for secondary cell wall biosynthesis and C(4) photosynthetic development toward the tip. This dataset will serve as the foundation for a systems biology approach to the understanding of photosynthetic development.
The functions of the plant body rely on interactions among distinct and nonequivalent cell types. The comparison of transcriptomes from different cell types should expose the transcriptional networks that underlie cellular attributes and contributions. Using laser microdissection and microarray profiling, we have produced a cell type transcriptome atlas that includes 40 cell types from rice (Oryza sativa) shoot, root and germinating seed at several developmental stages, providing patterns of cell specificity for individual genes and gene classes. Cell type comparisons uncovered previously unrecognized properties, including cell-specific promoter motifs and coexpressed cognate binding factor candidates, interaction partner candidates and hormone response centers. We inferred developmental regulatory hierarchies of gene expression in specific cell types by comparison of several stages within root, shoot and embryo.
Laser microdissection (LM) utilizes a cutting or harvesting laser to isolate specific cells from histological sections; the process is guided by microscopy. This provides a means of removing selected cells from complex tissues, based only on their identification by microscopic appearance, location, or staining properties (e.g., immunohistochemistry, reporter gene expression, etc.). Cells isolated by LM can be a source of cell-specific DNA, RNA, protein or metabolites for subsequent evaluation of DNA modifications, transcript/protein/metabolite profiling, or other cell-specific properties that would be averaged with those of neighboring cell types during analysis of undissected complex tissues. Plants are particularly amenable to the application of LM; the highly regular tissue organization and stable cell walls of plants facilitate the visual identification of most cell types even in unstained tissue sections. Plant cells isolated by LM have been the starting point for a variety of genomic and metabolite studies of specific cell types.
SummaryThe measured differential expression of genes between bundle sheath and mesophyll cells at successive developmental stages of the maize leaf is used to identify C4-photosynthesis-related candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.