SUMMARYPlants survive against myriad environmental odds while remaining rooted to a single spot. The time scale over which plant cells can respond to environmental cues is seldom appreciated. Fluorescent protein-assisted live imaging of peroxisomes reveals that they respond within seconds of exposure to hydrogen peroxide and hydroxyl radicals by producing dynamic extensions called peroxules. Observations of the Arabidopsis flu mutant and treatments with xenobiotics eliciting singlet oxygen and superoxide reactive oxygen species suggest that the observed responses are specific for hydroxyl radicals. Prolonged exposure to hydroxyl radicals inhibits peroxule extension, and instead causes motile and spherical peroxisomes in a cell to become immotile and elongate several-fold. Expression of photo-convertible EosFP-PTS1 demonstrates that vermiform peroxisomes result from rapid stretching of individual peroxisomes, while the subsequent 'beads-on-a-string' morphology results from differential protein distribution within an elongated tubule. Over time, the beads in elongated peroxisomes also extend peroxules randomly before undergoing asynchronous, asymmetrical fission. Peroxule extension does not appear to involve cytoskeletal elements directly, but is closely aligned with and reflects the dynamics of ER tubules. Peroxisomal responses reveal a rapidly invoked subcellular machinery that is involved in recognition of hydroxyl stress thresholds, and its possible remediation locally through extension of peroxules or globally by increasing peroxisome numbers. A matrix protein retro-flow mechanism that supports peroxisome-ER connectivity in plant cells is suggested.
Stroma-filled tubules named stromules are sporadic extensions of plastids. Earlier, photobleaching was used to demonstrate fluorescent protein diffusion between already interconnected plastids and formed the basis for suggesting that all plastids are able to form networks for exchanging macromolecules. However, a critical appraisal of literature shows that this conjecture is not supported by unequivocal experimental evidence. Here, using photoconvertible mEosFP, we created color differences between similar organelles that enabled us to distinguish clearly between organelle fusion and nonfusion events. Individual plastids, despite conveying a strong impression of interactivity and fusion, maintained well-defined boundaries and did not exchange fluorescent proteins. Moreover, the high pleomorphy of etioplasts from dark-grown seedlings, leucoplasts from roots, and assorted plastids in the accumulation and replication of chloroplasts5 (arc5), arc6, and phosphoglucomutase1 mutants of Arabidopsis thaliana suggested that a single plastid unit might be easily mistaken for interconnected plastids. Our observations provide succinct evidence to refute the long-standing dogma of interplastid connectivity. The ability to create and maintain a large number of unique biochemical factories in the form of singular plastids might be a key feature underlying the versatility of green plants as it provides increased internal diversity for them to combat a wide range of environmental fluctuations and stresses.
Mitochondria are pleomorphic, double membrane-bound organelles involved in cellular energetics in all eukaryotes. Mitochondria in animal and yeast cells are typically tubular-reticulate structures and several micro-meters long but in green plants they are predominantly observed as 0.2–1.5 μm punctae. While fission and fusion, through the coordinated activity of several conserved proteins, shapes mitochondria, the endoplasmic reticulum (ER) has recently been identified as an additional player in this process in yeast and mammalian cells. The mitochondria-ER relationship in plant cells remains largely uncharacterized. Here, through live-imaging of the entire range of mitochondria pleomorphy we uncover the underlying basis for the predominantly punctate mitochondrial form in plants. We demonstrate that mitochondrial morphology changes in response to light and cytosolic sugar levels in an ER mediated manner. Whereas, large ER polygons and low dynamics under dark conditions favor mitochondrial fusion and elongation, small ER polygons result in increased fission and predominantly small mitochondria. Hypoxia also reduces ER dynamics and increases mitochondrial fusion to produce giant mitochondria. By observing elongated mitochondria in normal plants and fission-impaired Arabidopsis nmt1-2 and drp3a mutants we also establish that thin extensions called matrixules and a beads-on-a-string mitochondrial phenotype are direct consequences of mitochondria-ER interactions.
;In Arabidopsis, based on the randomly misshapen phenotype of leaf epidermal trichomes, eight genes have been grouped into a 'DISTORTED' class. Three of the DIS genes, WURM, DISTORTED1 and CROOKED have been cloned recently and encode the ARP2, ARP3 and ARPC5 subunits respectively, of a conserved actin modulating ARP2/3 complex. Here we identify a fourth gene, DISTORTED2 as the Arabidopsis homolog of the ARPC2 subunit of the ARP2/3 complex. Like other mutants in the complex dis2 trichomes also display supernumerary, randomly localized cortical actin patches. In addition dis2 trichomes possess abnormally clustered endoplasmic microtubules near sites of actin aggregation. Since microtubules are strongly implicated in the establishment and maintenance of growth directionality in higher plants our observations of aberrant microtubule clustering in dis2 trichomes suggests a convincing explanation for the randomly distorted trichome phenotype in dis mutants. In addition, the close proximity of microtubule clusters to the arbitrarily dispersed cortical actin patches in the dis mutants provides fresh insights into cytoskeletal interactions leading us to suggest that in higher plants microtubule arrangements directed towards the establishment and maintenance of polar growth-directionality are guided by cortical actin behavior and organization.
Photoconvertible fluorescent proteins (FPs) are recent additions to the biologists' toolbox for understanding the living cell. Like green fluorescent protein (GFP), monomeric EosFP is bright green in color but is efficiently photoconverted into a red fluorescent form using a mild violet-blue excitation. Here, we report mEosFP-based probes that localize to the cytosol, plasma membrane invaginations, endosomes, prevacuolar vesicles, vacuoles, the endoplasmic reticulum, Golgi bodies, mitochondria, peroxisomes, and the two major cytoskeletal elements, filamentous actin and cortical microtubules. The mEosFP fusion proteins are smaller than GFP/red fluorescent protein-based probes and, as demonstrated here, provide several significant advantages for imaging of living plant cells. These include an ability to differentially color label a single cell or a group of cells in a developing organ, selectively highlight a region of a cell or a subpopulation of organelles and vesicles within a cell for tracking them, and understanding spatiotemporal aspects of interactions between similar as well as different organelles. In addition, mEosFP probes introduce a milder alternative to fluorescence recovery after photobleaching, whereby instead of photobleaching, photoconversion followed by recovery of green fluorescence can be used for estimating subcellular dynamics. Most importantly, the two fluorescent forms of mEosFP furnish bright internal controls during imaging experiments and are fully compatible with cyan fluorescent protein, GFP, yellow fluorescent protein, and red fluorescent protein fluorochromes for use in simultaneous, multicolor labeling schemes. Photoconvertible mEosFP-based subcellular probes promise to usher in a much higher degree of precision to live imaging of plant cells than has been possible so far using single-colored FPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.