Recycling and reusing of wastewater acquired high priority among the research community to meet the ever-increasing demand for groundwater, and to tackle water scarcity in every country. In this scenario, a grey water treatment system is developed with a vertical flow wetland construction tank (VFWCT)with sand, gravel and silex as media combined with phytoremediation technology using plants like Cyperus rotundus, Canna indica, Typha angustifolia, Cyperus pangorei, and Phragmites australis. The assessment parameters like color, odor, temperature, pH, electrical conductivity, free residual chlorine, Total Dissolved Solids (TDS), chloride, Sulphate, Total Suspended Solids (TSS),oil & grease, Sulphide,Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Nitrate Nitrogen, E.coli and Salmonella are used to substantiate the performance of proposed greywater treatment system. Simulation outcomes showed that most of the guideline values of the effluent are notably lower compared to the influent. The experimentation also focused on finding the best plant as Typha angustifolia for greywater treatment in the VFWCT. The plant’s rapid growth and the removal efficiency parameters of the plant with regard to the contaminants present in the greywater was highly notable. The removal efficiency was 56.56% and 50.25% for BOD5 and COD, the solids content TSS and TDS was 68% and 64.4%. The salt Cl− and Na+ removal efficiencies are 63.4% and 81.39% respectively. Majority of the parameters like pH value, Electrical conductivity, odor and TDS are higher than the groundwater aquifers, but falls within the world health organization safety limits.