Many economic and environmental studies on novel perovskite solar cells (PSCs), published ex post the development stage to investigate the market competitiveness, have focused on laboratory‐scale PSC architectures that are not amenable for upscaling. In this paper, we evaluate the market potential and environmental sustainability of a scalable carbon‐electrode‐based PSC by benchmarking it to the market dominating c‐Si photovoltaics and CIGS thin film photovoltaics. The analysis covers the PSCs full lifecycle, at the module and system levels (residential and utility scale), and is based on realistic annual energy output data derived from energy yield calculations. We find that this PSC can produce electricity at low cost (3–6 €cents/kWh), with lowest energy payback (0.6–0.8 years) and greenhouse gas emissions (15–25g CO2 eq./kWh) compared with grid‐connected PV market alternatives, assuming 25years of lifetime, expected PV system cost reductions, and PSC module recycling and refurbishment.
Innovative, sustainable construction products are emerging in response to market demands. One potential product, insulating concrete forms (ICFs), offers possible advantages in energy and environmental performance when compared with traditional construction materials. Even though ICFs are in part derived from a petroleum-based product, the benefits in the use phase outweigh the impacts of the raw material extraction and manufacturing phase. This paper quantitatively measures ICFs' performance through a comparative life cycle assessment of wall sections comprised of ICF and traditional wood-frame. The life cycle stages included raw materials extraction and manufacturing, construction, use and end of life for a 2,450 square foot house in Pittsburgh, Pennsylvania. Results showed that even though building products such as ICFs are energy intensive to produce and thus have higher environmental impacts in the raw materials extraction and manufacturing phase, the use phase dominated in the life cycle. For the use phase, the home constructed of ICFs consumed 20 percent less energy when compared to a traditional wood-frame structure. The results of the impact assessment show that ICFs have higher impacts over wood homes in most impact categories. The high impacts arise from the raw materials extraction and manufacturing phase of ICFs. But there are a number of embedded unit processes such as disposal of solid waste and transport of natural gas that contribute to this high impact and identifying the top unit process and substance contributors to the impact category is not intuitive. Selecting different unit processes or impact assessment methods will yield dissimilar results and the tradeoffs associated with every building product should be considered after studying the entire life cycle in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.