We investigate the existence of ion-acoustic shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdVB equation has been derived for the system, and its solution plotted for different kappa values, oxygen ion densities, as well as the temperature ratios for the ions. It is found that the amplitude of the shock wave decreases with increasing kappa values. The strength of the shock profile decreases with increasing temperatures of the positively charged oxygen ions and densities of negatively charged oxygen ions.
We investigate the existence of Ion-Acoustic solitary/shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot electrons and cold electrons. The KPB equation is derived for the system; its solution is plotted for different kappa values, as well as for the temperature ratios of ions. It is found that the amplitude of solitary structure increases with increasing kappa values and negatively charged oxygen ion densities. As the temperature of the positively charged oxygen ions increases, the amplitude of solitary wave also increases. We have also studied the dependence of coefficients of the KPB equation on physical parameters relevant to comet Halley.
Alfven waves are important in a wide variety of areas like astrophysical, space and laboratory plasmas. In cometary environments, waves in the hydromagnetic range of frequencies are excited predominantly by heavy ions. We, therefore, study the stability of Alfven waves in a plasma of hydrogen ions, positively and negatively charged oxygen ions and electrons. Each species has been modeled by drifting distributions in the direction parallel to the magnetic field; in the perpendicular direction the distribution is simulated with a loss cone type distribution obtained through the subtraction of two Maxwellian distributions with different temperatures. We find that for frequencies  ( and  being respectively the Doppler shifted and hydrogen ion gyro-frequencies ), the peak growth rate increases with increasing negatively charged oxygen ion densities. On the other hand, for frequencies  (being the oxygen ion gyro-frequencies) the region of wave growth increases with increasing negatively charged oxygen ion densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.