Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies) and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past two decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, various methods are adapted to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins) or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria) or enhanced a process used naturally by plants (mycorrhiza) to minimise the movement of Na+ to the shoot. Proper management of Arbuscular Mycorrhizal Fungi (AMF) has the potential to improve the profitability and sustainability of salt tolerance. In this review article, the discussion is restricted to the mycorrhizal symbiosis and alleviation of salinity stress.
Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data. Here we purified PDO KF1 from Comamonas testosteroni KF1 and found that it had an apparent k cat / K m for phthalate of 0.58 ± 0.09 μM −1 s −1 , over 25-fold greater than for terephthalate. The crystal structure of the enzyme at 2.1 Å resolution revealed that it is a hexamer comprising two stacked α 3 trimers, a configuration not previously observed in RO crystal structures. We show that within each trimer, the protomers adopt a head-to-tail configuration typical of ROs. The stacking of the trimers is stabilized by two extended helices, which make the catalytic domain of PDO KF1 larger than that of other characterized ROs. Complexes of PDO KF1 with phthalate and terephthalate revealed that Arg207 and Arg244, two residues on one face of the active site, position these substrates for regiospecific hydroxylation. Consistent with their roles as determinants of substrate specificity, substitution of either residue with alanine yielded variants that did not detectably turnover phthalate. Together, these results provide critical insights into a pollutant-degrading enzyme that has served as a paradigm for ROs and facilitate the engineering of this enzyme for bioremediation and biocatalytic applications.
on linseed (Linum usitatissimum L.) growth response with phosphate solubilizing bacteria Pseudomonas fluorescens; different doses of superphosphate were used: 20 kg ha -1 (half recommended dose), 40 kg ha -1 (recommended dose), and 80 kg ha -1 (double recommended dose) in earthen pots filled with sterilized soil under greenhouse conditions. Among all the growth parameters, the following were the highest in the G. mosseae + P. fluorescens combination at the medium concentration (recommended superphosphate dose): plant height (78.74 ± 1.8 cm), fresh shoot weight (3.45 ± 0.294 g), dry shoot weight (0.57 ± 0.007 g), fresh root weight (0.223 ± 0.023 g), dry root weight (0.036 ± 0.004 g), root length (17.67 ± 0.48 cm), AM spore number (94.4 ± 9.86), shoot (1.14 ± 0.115%) and root (1.29 ± 0.110%) P content, and acidic (0.447 ± 0.012 IU g -1 FW) and alkaline phosphatase activity (0.119 ± 0.008 IU g -1 FW). The percentage mycorrhizal root colonization with the A. laevis + P. fluorescens (86.86 ± 2.17%) combination and chlorophyll content with the G. mosseae + A. laevis + P. fluorescens (0.474 ± 0.009 mg g -1 FW) combination recorded the highest values at the low concentration (half recommended superphosphate dose) as compared with non-mycorrhizal plants (control). The high superphosphate dose clearly reduced or decreased all the growth parameters. Therefore, vigorous growth and maximum flax yield can be achieved by inoculating plants with AM fungi and P. fluorescens with the recommended dose or less than the recommended dose of superphosphate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.