Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a leading cause of mortality worldwide into 21st century. The mortality and spread of this disease has further been aggravated because of synergy of this disease with HIV. A number of anti-TB drugs are ineffective against this disease because of development of resistance strains. Internationally efforts are being made to develop new anti-tubercular agents. A number of drug targets from cell wall biosynthesis, nucleic acid biosynthesis, and many other biosynthetic pathways are being unraveled throughout the world and are being utilized for drug development. In this review, socioeconomic problems in developing countries, efforts to control this disease in different individuals, the targets (known already and newly discovered), existing anti-tubercular agents including natural products and lead molecules, and the future prospects to develop new anti-TB agents are described.
DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD+-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets. Using virtual screening against an in-house database of compounds and our recently determined crystal structure of the NAD+ binding domain of the Mycobacterium tuberculosis LigA, we have identified N1, Nn-bis-(5-deoxy-α-d-xylofuranosylated) diamines as a novel class of inhibitors for this enzyme. Assays involving M.tuberculosis LigA, T4 ligase and human DNA ligase I show that these compounds specifically inhibit LigA from M.tuberculosis. In vitro kinetic and inhibition assays demonstrate that the compounds compete with NAD+ for binding and inhibit enzyme activity with IC50 values in the µM range. Docking studies rationalize the observed specificities and show that among several glycofuranosylated diamines, bis xylofuranosylated diamines with aminoalkyl and 1, 3-phenylene carbamoyl spacers mimic the binding modes of NAD+ with the enzyme. Assays involving LigA-deficient bacterial strains show that in vivo inhibition of ligase by the compounds causes the observed antibacterial activities. They also demonstrate that the compounds exhibit in vivo specificity for LigA over ATP-dependent ligase. This class of inhibitors holds out the promise of rational development of new anti-tubercular agents.
The placental-decidual interaction through invading trophoblasts determines whether a physiological transformation of the uterine spiral arteries is established or not. Trophoblast-orchestrated artery remodeling is central to normal placentation. Dysregulated uteroplacental interaction and vascular remodeling are thought to be associated with the molecular events underlying the pathology of late pregnancy anomalies including preeclampsia. Although the exact gestational age at which trophoblast invasion ceases is not known, it remains unclear whether late pregnancy trophoblasts retain the ability to transform the uterine arteries. Here, we have developed a dual cell, in vitro culture system that mimics the vascular remodeling events during normal pregnancy. We demonstrate that first and third trimester trophoblasts respond differentially to interactive signals from endothelial cells when cultured on matrigel. Term primary trophoblasts or immortalized third trimester extravillous TCL1 trophoblasts not only fail to respond to signals from endothelial cells but also inhibit endothelial cell tube formation. In contrast, HTR8 cells, representing a first trimester trophoblast cell line with invasive properties, undergo spontaneous migration and synchronize with the endothelial cells in a capillary network. This disparity in behavior was confirmed in vivo using a matrigel plug assay. Poor expression of VEGF C and VEGF receptors coupled with high E-cadherin expression by term primary trophoblasts and TCL1 cells contributed to their restricted interactive and migratory properties. We further show that the kinase activity of VEGF R2 is essential for proactive cross-talk by HTR8 cells. This unique behavior of first trimester trophoblasts in the presence of endothelial cells offers a potential approach to study cell-cell interactions and to decipher modulatory components in the serum samples from adverse pregnancy outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.