The Asinger multicomponent reaction is a versatile synthetic tool which gives access to multiple drug‐like scaffolds such as 3‐thiazolines. The diversity and easy access of its starting materials, its operational simplicity combined with mild conditions and relatively good yields, renders the Asinger reaction, today more than ever, a cornerstone not only in heterocyclic chemistry and modern synthesis but also in medicinal chemistry. In this review, we perform a thorough analysis of the scope and limitations on the different reaction variants with their starting materials, the three‐dimensional solid‐state conformations of the Asinger derivatives, and we underline and classify all the major post‐modifications that have been described. In addition, we report all the major applications in drug discovery projects.
Herein, we report the synthesis of a series of colibactin warhead model compounds using two newly developed metal‐free photocatalytic cyclopropanation reactions. These mild cyclopropanations expand the known applications of eosin within synthesis. A halogen atom transfer reaction mode has been harnessed so that dihalides can be used as the cyclopropanating agents. The colibactin warhead models were then used to provide new insight into two key mechanisms in colibactin chemistry. An explanation is provided for why the colibactin warhead sometimes undergoes a ring expansion‐addition reaction to give fused cyclobutyl products while at other times nucleophiles add directly to the cyclopropyl unit (as when DNA adds to colibactin). Finally, we provide some evidence that Cu(II) chelated to colibactin may catalyze an important oxidation of the colibactin‐DNA adduct. The Cu(I) generated as a result could then also play a role in inducing double strand breaks in DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.