OBJECTIVE:
LDL (low-density lipoprotein) transcytosis across the endothelium is performed by the SR-BI (scavenger receptor class B type 1) receptor and contributes to atherosclerosis. HMGB1 (high mobility group box 1) is a structural protein in the nucleus that is released by cells during inflammation; extracellular HMGB1 has been implicated in advanced disease. Whether intracellular HMGB1 regulates LDL transcytosis through its nuclear functions is unknown.
Approach and Results:
HMGB1 was depleted by siRNA in human coronary artery endothelial cells, and transcytosis of LDL was measured by total internal reflection fluorescence microscopy. Knockdown of HMGB1 attenuated LDL transcytosis without affecting albumin transcytosis. Loss of HMGB1 resulted in reduction in SR-BI levels and depletion of SREBP2 (sterol regulatory element-binding protein 2)—a transcription factor upstream of SR-BI. The effect of HMGB1 depletion on LDL transcytosis required SR-BI and SREBP2. Overexpression of HMGB1 caused an increase in LDL transcytosis that was unaffected by inhibition of extracellular HMGB1 or depletion of RAGE (receptor for advanced glycation endproducts)—a cell surface receptor for HMGB1. The effect of HMGB1 overexpression on LDL transcytosis was prevented by knockdown of SREBP2. Loss of HMGB1 caused a reduction in the half-life of SREBP2; incubation with LDL caused a significant increase in nuclear localization of HMGB1 that was dependent on SR-BI. Animals lacking endothelial HMGB1 exhibited less acute accumulation of LDL in the aorta 30 minutes after injection and when fed a high-fat diet developed fewer fatty streaks and less atherosclerosis.
Conclusions:
Endothelial HMGB1 regulates LDL transcytosis by prolonging the half-life of SREBP2, enhancing SR-BI expression. Translocation of HMGB1 to the nucleus in response to LDL requires SR-BI.
In healthy blood vessels, albumin crosses the endothelium to leave the circulation by transcytosis. However, little is known about the regulation of albumin transcytosis or how it differs in different tissues; its physiological purpose is also unclear. Using total internal reflection fluorescence microscopy, we quantified transcytosis of albumin across primary human microvascular endothelial cells from both lung and skin. We then validated our in vitro findings using a tissue-specific knockout mouse model. We observed that albumin transcytosis was saturable in the skin but not the lung microvascular endothelial cells, implicating a receptor-mediated process. We identified the scavenger receptor CD36 as being both necessary and sufficient for albumin transcytosis across dermal microvascular endothelium, in contrast to the lung where macropinocytosis dominated. Mutations in the apical helical bundle of CD36 prevented albumin internalization by cells. Mice deficient in CD36 specifically in endothelial cells exhibited lower basal permeability to albumin and less basal tissue edema in the skin but not in the lung. Finally, these mice also exhibited a smaller subcutaneous fat layer despite having identical total body weights and circulating fatty acid levels as wild-type animals. In conclusion, CD36 mediates albumin transcytosis in the skin but not the lung. Albumin transcytosis may serve to regulate fatty acid delivery from the circulation to tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.