Cultivated emmer wheat, Triticum dicoccon Schrank, a tetraploid species with hulled grain, has been largely cultivated during seven millennia in the Middle-East, Central and West Asia, and Europe. It has been largely replaced by hulless species and is now a minor crop, with the exception of some countries like India, Ethiopia and Yemen, where its grain is used for preparing traditional foods. Nutritional qualities and specific taste and flavor of emmer wheat products have led to a recent development of the cultivation in some European countries. Emmer wheat also possesses valuable traits of resistance to pests and diseases and tolerance to abiotic stresses and is increasingly used as a reservoir of useful genes in wheat breeding. In the present article, a review concerning taxonomy, diversity and history of cultivation of emmer wheat is reported. Grain characteristics and valuable agronomic traits are described. Some successful examples of emmer wheat utilization for the development of durum or bread wheat cultivars are examined, and the perspectives in using emmer wheat as health food and for the development of new breeding germplasm are discussed.
Development of low-nitrogen (N) tolerant and N-responsive durum wheat genotypes is required since nitrogen efficiency has emerged as a highly desirable trait from economic and environmental perspectives. Two hundred durum wheat genotypes were evaluated at three locations under optimum (ON) and low (LN) nitrogen conditions to screen genotypes for low-nitrogen tolerance and responsiveness to an optimum N supply. The results showed significant variations among the durum wheat genotypes for low-N tolerance and responsiveness. The average reduction in grain yield under the LN condition was 48.03% across genotypes. Only 17% of the genotypes tested performed well (grain yield reduction <40%) under LN conditions. Based on the absolute grain yield, biomass yield, and normalized difference vegetative index value, on average, 32, 14, 17, and 37% of the tested genotypes were classified as efficient and responsive, efficient and nonresponsive, inefficient and responsive, and inefficient and nonresponsive, respectively. Considering the absolute and relative grain yield, biomass yield, normalized difference vegetative index values, and stress tolerance indices as selection criteria, 17 genotypes were chosen for subsequent breeding. Among the screening indices, geometric mean productivity, stress tolerance index, yield index, and stress susceptibility index exhibited positive and significant correlations with grain yield under both N conditions; hence, either of these traits can be used to select low-N-tolerant genotypes. The common genotypes identified as LN-tolerant and responsive to N application in this study could be used as parental donors for developing N-efficient and responsive durum wheat varieties.
This research was conducted to assess genetic distance, extent, and pattern of diversity among sesame accessions. A total of 64 sesame Accessions were evaluated in an 8 x 8 lattice design with two replications in 2021 at Werer Agricultural Research Center. Analysis of variance revealed that there was a statistically significant difference among the accessions for all traits except for 50% days to emergence and the number of seeds per pod. Principal components analysis showed the first five PCAs viz. PC1 (21.9%), PC2 (11.00%), PC3 (15.6%), PC4 (18.3%), and PC5 (9.5) with a total contribution of 76.3% variation. The dendrogram was constructed using the Unweighted Pair-group Method with Arithmetic Means to separate Accessions into five distinct clusters. Sesame accessions with high seed yield and high mean values for other desirable traits were grouped into Cluster I and Cluster V. Cluster IV and Cluster V had the highest inter-cluster distance. Accession in Cluster V (Acc.241297) could be crossed with other clusters to come up with promising segregation for further improvement programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.