Thyroid nodule is one of the common life-threatening diseases, and it had an increasing trend over the last years. Ultrasound imaging is a commonly used diagnostic method for detecting and characterizing thyroid nodules. However, assessing the entire slide images is time-consuming and challenging for the experts. For assessing ultrasound images in a meaningful manner, there is a need for automated, trustworthy, and objective approaches. The recent advancements in deep learning have revolutionized many aspects of computer-aided diagnosis (CAD) and image analysis tools that address the problem of diagnosing thyroid nodules. In this study, we explained the objectives of deep learning in thyroid cancer imaging and conducted a literature review on its potential, limits, and current application in this area. We gave an overview of recent progress in thyroid cancer diagnosis using deep learning methods and discussed various challenges and practical problems that might limit the growth of deep learning and its integration into clinical workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.