In this paper, we propose a high-precision memristive neural network with neurons implemented by complementary metal oxide semiconductor (CMOS) inverters. Regarding the process variations in the memristors and the sensitivity of the memristive crossbar structure to these fluctuations, the read operation with repetitive pulses and feedback-based write in the memristors are used to implement the neural networks trained by the ex-situ method. Moreover, accurate modeling of the neuron circuit (CMOS inverter) and decreasing the mismatch between trained weights and the limited memristances fill the gap between simulation and implementation. To employ physical constraints based on the memristor framework during the training phase, a linear function is utilized to map the trained weights to the acceptable range of memristances after the training phase. To solve the vanishing gradient problem due to the use of the tanh function as an activation function and for better learning of the network, some measures are taken. Moreover, fin field-effect transistor (FinFET) technology is used to prevent the reduction of the accuracy of the inverter-based memristive neural networks due to the process variations. Overall, our implementation improves the speed, area, power-delay product (PDP), and mean square error (MSE) of the training stage by 91.43%, 95.06%, 48.29% and 81.64%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.