The present work reports data of radiation exposure to the patients during head, chest, pelvis and abdomen CT examinations performed on a third-generation 16-slice CT machine. Radiation exposure was estimated using size specific dose estimates (SSDE) method, which takes into account patient’s physical dimensions in phantom measured computed tomography dose index (CTDI) value. The reported median CT dose volume index CTDIvol values in head, chest, pelvis and abdomen examinations were 26.76, 16.27, 29.81 and 14.74 mGy, respectively. The median doses evaluated using SSDE methodology for the above mentioned procedure were 54.1, 23.1, 42.8 and 20.1 mGy, respectively. Our results showed variation in dose values estimated using CTDI and SSDE methods in all examinations. The evaluated SSDE values were also compared to the values derived from data reported by the American Association of Physicist in Medicine (AAPM). SSDE values in present measurements are 4–8% lower than AAPM values. The present results show that CTDI parameters recorded on CT console should not be used to specify patient dose during CT procedures.
Purpose Central nervous system (CNS) bacterial and fungal infections can cause secondary vasculitis which worsens the prognosis due to development of complications like infarctions or hemorrhages. In this prospective study, we aim to study intracranial vessel wall imaging findings in bacterial and fungal infections. Methods We included 12 cases of nontubercular bacterial and fungal CNS infections each, in whom definitive microbiological diagnosis could be made. High-resolution vessel wall imaging (VWI) and time of flight MR angiography (TOF MRA) were incorporated in the routine imaging protocol. All cases were evaluated for the presence of vascular enhancement, pattern of enhancement, and stenosis on VWI. Statistical analysis was done to evaluate association between findings of vessel wall imaging and infarctions. Results We found infarctions in 5 out of 12 cases (41.7%) of the bacterial group and 7 out of 12 cases (58.3%) of the fungal group. Vessel wall enhancement was seen in 5 cases (41.7%) of the bacterial group and 9 cases (75%) of the fungal group. There was a significant association between infarctions and vessel wall enhancement in the fungal group. However, pattern of enhancement or stenosis on VWI was not significantly associated with presence of infarction. VWI detected more cases of vascular involvement than TOF MRA. Conclusion Secondary infectious vasculitis in bacterial and fungal infections can be detected by VWI, which can play an important role in better patient management as detection of vascular involvement can prompt early treatment to prevent complications like infarctions or hemorrhages.
Purpose Vascular complications can be seen in various viral CNS infections. Variable neuro-imaging findings have been described in the literature elucidating the parenchymal changes with vascular involvement. Vessel wall imaging (VWI) can help to detect these vascular involvements. We aimed to describe the role and usefulness of VWI in the evaluation of various viral CNS infections. Methods In this prospective study, we included 15 cases of various diagnosed viral CNS infections (varicella, HIV encephalopathy, HSV encephalitis, Japanese encephalitis, dengue, COVID-19). VWI and time-of-flight MR angiography (TOF MRA) were included in imaging protocol. All cases were evaluated for the presence of cerebral parenchymal changes, vascular enhancement, and vascular stenosis. Results We found infarctions in all 5 cases of varicella, 1 case of HIV encephalopathy, and 1 case of COVID-19 encephalopathy. All these cases also showed vascular enhancement and stenosis on VWI. The rest of the cases, including 1 case of HIV encephalopathy, 3 cases of herpes encephalitis, 2 cases of dengue, and 2 cases of Japanese encephalitis did not have any vascular complication, and also did not show vascular enhancement or stenosis. Conclusion VWI can be useful in the detection of vascular involvement in various viral infections of CNS which show a relatively higher cerebrovascular complication rate like varicella, HIV encephalopathy, and COVID-19. However, VWI may not be useful in the routine evaluation of other viral infections like herpes, dengue, and Japanese encephalitis, which have a very low rate of cerebrovascular complication rate.
In vivo morphological change of flow diverter stents (FDS) is a known phenomenon and can be seen secondary to various device- and vasculature-related factors such as improper sizing of the device, twisting of the device in tortuous anatomy, insufficient proximal landing zone, and insufficient chronic resistive force of the stent, etc. However, we have encountered a case where severe vasospasm due to aneurysmal subarachnoid hemorrhage led to the collapse of the proximal end of the FDS. Development of vasospasm and consequent possible failure of the device should be taken into consideration when planning flow diversion in ruptured aneurysms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.