eIF4A is a DEAD-box RNA-dependent ATPase thought to unwind RNA secondary structure in the 5'-untranslated regions (UTRs) of mRNAs to promote their recruitment to the eukaryotic translation pre-initiation complex (PIC). We show that eIF4A's ATPase activity is markedly stimulated in the presence of the PIC, independently of eIF4E•eIF4G, but dependent on subunits i and g of the heteromeric eIF3 complex. Surprisingly, eIF4A accelerated the rate of recruitment of all mRNAs tested, regardless of their degree of structural complexity. Structures in the 5'-UTR and 3' of the start codon synergistically inhibit mRNA recruitment in a manner relieved by eIF4A, indicating that the factor does not act solely to melt hairpins in 5'-UTRs. Our findings that eIF4A functionally interacts with the PIC and plays important roles beyond unwinding 5'-UTR structure is consistent with a recent proposal that eIF4A modulates the conformation of the 40S ribosomal subunit to promote mRNA recruitment.
RNA structures that impede ribosome binding or subsequent scanning of the 5′-untranslated region (5′-UTR) for the AUG initiation codon reduce translation efficiency. Yeast DEAD-box RNA helicase Ded1 appears to promote translation by resolving 5′-UTR structures, but whether its paralog, Dbp1, performs similar functions is unknown. Furthermore, direct in vivo evidence was lacking that Ded1 or Dbp1 resolves 5′-UTR structures that impede attachment of the 43S preinitiation complex (PIC) or scanning. Here, profiling of translating 80S ribosomes reveals that the translational efficiencies of many more mRNAs are reduced in a ded1-ts dbp1Δ double mutant versus either single mutant, becoming highly dependent on Dbp1 or Ded1 only when the other helicase is impaired. Such ‘conditionally hyperdependent’ mRNAs contain unusually long 5′-UTRs with heightened propensity for secondary structure and longer transcript lengths. Consistently, overexpressing Dbp1 in ded1 cells improves the translation of many such Ded1-hyperdependent mRNAs. Importantly, Dbp1 mimics Ded1 in conferring greater acceleration of 48S PIC assembly in a purified system on mRNAs harboring structured 5′-UTRs. Profiling 40S initiation complexes in ded1 and dbp1 mutants provides direct evidence that Ded1 and Dbp1 cooperate to stimulate both PIC attachment and scanning on many Ded1/Dbp1-hyperdependent mRNAs in vivo.
Sarin (GB, O-isopropyl methylphosphonofluoridate) is a potent organophosphorus (OP) nerve agent that inhibits acetylcholinesterase (AChE) irreversibly. The subsequent build-up of acetylcholine (ACh) in the central nervous system (CNS) provokes seizures and, at sufficient doses, centrally-mediated respiratory arrest. Accumulation of ACh at peripheral autonomic synapses leads to peripheral signs of intoxication and overstimulation of the muscarinic and nicotinic receptors, which is described as “cholinergic crisis” (i.e. diarrhea, sweating, salivation, miosis, bronchoconstriction). Exposure to high doses of sarin can result in tremors, seizures, and hypothermia. More seriously, build-up of ACh at neuromuscular junctions also can cause paralysis and ultimately peripherally-mediated respiratory arrest which can lead to death via respiratory failure. In addition to its primary action on the cholinergic system, sarin possesses other indirect effects. These involve the activation of several neurotransmitters including gamma-amino-butyric acid (GABA) and the alteration of other signaling systems such as ion channels, cell adhesion molecules, and inflammatory regulators. Sarin exposure is associated with symptoms of organophosphate-induced delayed neurotoxicity (OPIDN) and organophosphate-induced chronic neurotoxicity (OPICN). Moreover, sarin has been involved in toxic and immunotoxic effects as well as organophosphate-induced endocrine disruption (OPIED). The standard treatment for sarin-like nerve agent exposure is post-exposure injection of atropine, a muscarinic receptor antagonist, accompanied by an oxime, an AChE reactivator, and diazepam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.