Branch decomposition is a prominent method for structurally decomposing a graph, a hypergraph or a propositional formula in conjunctive normal form. The width of a branch decomposition provides a measure of how well the object is decomposed. For many applications, it is crucial to computing a branch decomposition whose width is as small as possible. We propose an approach based on Boolean Satisfiability (SAT) to finding branch decompositions of small width. The core of our approach is an efficient SAT encoding which determines with a single SAT-call whether a given hypergraph admits a branch decomposition of a certain width. For our encoding, we propose a natural partition-based characterization of branch decompositions. The encoding size imposes a limit on the size of the given hypergraph. In order to break through this barrier and to scale the SAT approach to larger instances, we develop a new heuristic approach where the SAT encoding is used to locally improve a given candidate decomposition until a fixed-point is reached. This new SAT-based local improvement method scales now to instances with several thousands of vertices and edges.
The decomposition of graphs is a prominent algorithmic task with numerous applications in computer science. A graph decomposition method is typically associated with a width parameter (such as treewidth) that indicates how well the given graph can be decomposed. Many hard (even #P-hard) algorithmic problems can be solved efficiently if a decomposition of small width is provided; the runtime, however, typically depends exponentially on the decomposition width. Finding an optimal decomposition is itself an NP-hard task. In this paper we propose, implement, and test the first practical decomposition algorithms for the width parameters treecut width and treedepth. These two parameters have recently gained a lot of attention in the theoretical research community as they offer the algorithmic advantage over treewidth by supporting so-called fixed-parameter algorithms for certain problems that are not fixed-parameter tractable with respect to treewidth. However, the existing research has mostly been theoretical. A main obstacle for any practical or experimental use of these two width parameters is the lack of any practical or implemented algorithm for actually computing the associated decompositions. We address this obstacle by providing the first practical decomposition algorithms.Our approach for computing treecut width and treedepth decompositions is based on efficient encodings of these decomposition methods to the propositional satisfiability problem (SAT). Once an encoding is generated, any satisfiability solver can be used to find the decomposition. This allows us to leverage the surprising power of todays state-of-the art SAT solvers. The success of SAT-based decomposition methods crucially depends on the used characterisation of the decomposition method, as not every characterisation is suitable for that task. For instance, the successful leading SAT encoding for treewidth is based on a characterisation of treewidth in terms of elimination orderings. For treecut width and treedepth, however, we propose new characterisations that are based on sequences of partitions of the vertex set, a method that was pioneered for clique-width. We implemented and systematically tested our encodings on various benchmark instances, including famous named graphs and random graphs of various density. It turned out that for the
Branch decomposition is a prominent method for structurally decomposing a graph, a hypergraph or a propositional formula in conjunctive normal form. The width of a branch decomposition provides a measure of how well the object is decomposed. For many applications, it is crucial to computing a branch decomposition whose width is as small as possible. We propose an approach based on Boolean Satisfiability (SAT) to finding branch decompositions of small width. The core of our approach is an efficient SAT encoding which determines with a single SAT-call whether a given hypergraph admits a branch decomposition of a certain width. For our encoding, we propose a natural partition-based characterization of branch decompositions. The encoding size imposes a limit on the size of the given hypergraph. In order to break through this barrier and to scale the SAT approach to larger instances, we develop a new heuristic approach where the SAT encoding is used to locally improve a given candidate decomposition until a fixed-point is reached. This new SAT-based local improvement method scales now to instances with several thousands of vertices and edges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.