The twin group {T_{n}} is a right-angled Coxeter group generated by {n-1} involutions, and the pure twin group {\mathrm{PT}_{n}} is the kernel of the natural surjection from {T_{n}} onto the symmetric group on n symbols.
In this paper, we investigate some structural aspects of these groups.
We derive a formula for the number of conjugacy classes of involutions in {T_{n}}, which, quite interestingly, is related to the well-known Fibonacci sequence.
We also derive a recursive formula for the number of z-classes of involutions in {T_{n}}.
We give a new proof of the structure of {\operatorname{Aut}(T_{n})} for {n\geq 3}, and show that {T_{n}} is isomorphic to a subgroup of {\operatorname{Aut}(\mathrm{PT}_{n})} for {n\geq 4}.
Finally, we construct a representation of {T_{n}} to {\operatorname{Aut}(F_{n})} for {n\geq 2}.
We study groups of some virtual knots with small number of crossings and prove that there is a virtual knot with long lower central series which, in particular, implies that there is a virtual knot with residually nilpotent group. This gives a possibility to construct invariants of virtual knots using quotients by terms of the lower central series of knot groups. Also, we study decomposition of virtual knot groups as semi direct product and free product with amalgamation. In particular, we prove that the groups of some virtual knots are extensions of finitely generated free groups by infinite cyclic groups.
The twin group [Formula: see text] is a right angled Coxeter group generated by [Formula: see text] involutions and having only far commutativity relations. These groups can be thought of as planar analogues of Artin braid groups. In this paper, we study some properties of twin groups whose analogues are well known for Artin braid groups. We give an algorithm for two twins to be equivalent under individual Markov moves. Further, we show that twin groups [Formula: see text] have [Formula: see text]-property and are not co-Hopfian for [Formula: see text].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.