We made the first ever successful effort in India to detect the genetic material of SARS-CoV-2 viruses to understand the capability and application of wastewater-based epidemiology (WBE) surveillance in India. Sampling was carried out on 8 and 27 May 2020 at the Old Pirana Waste Water Treatment Plant (WWTP) at Ahmedabad, Gujarat that receives effluent from Civil Hospital treating COVID-19 patients. All three, i.e. ORF1ab, N and S genes of SARS-CoV-2, were found in the influent with no genes detected in effluent collected on 8 and 27 May 2020. Increase in SARS-CoV-2 genetic loading in the wastewater between 8 and 27 May 2020 samples concurred with corresponding increase in the number of active COVID-19 patients in the city. The number of gene copies was comparable to that reported in untreated wastewaters of Australia, China and Turkey and lower than that of the USA, France and Spain. However, temporal changes in SARS-CoV-2 RNA concentrations need to be substantiated further from the perspectives of daily and short-term changes of SARS-CoV-2 in wastewater through long-term monitoring. The study results SARS-CoV-2 will assist concerned authorities and policymakers to formulate and/or upgrade COVID-19 surveillance to have a more explicit picture of the pandemic curve. While infectivity of SARS-CoV-2 through the excreted viral genetic material in the aquatic environment is still being debated, the presence and detection of genes in wastewater systems makes a strong case for the environmental surveillance of the COVID-19 pandemic.
Quorum sensing (QS) is a bacterial communication process that depends on the bacterial population density. It involves small diffusible signaling molecules which activate the expression of myriad genes that control diverse array of functions like bioluminescence, virulence, biofilm formation, sporulation, to name a few. Since QS is responsible for virulence in the clinically relevant bacteria, inhibition of QS appears to be a promising strategy to control these pathogenic bacteria. With indiscriminate use of antibiotics, there has been an alarming increase in the number of antibiotic resistant pathogens. Antibiotics are no longer the magic bullets they were once thought to be and therefore there is a need for development of new antibiotics and/or other novel strategies to combat the infections caused by multidrug resistant organisms. Quorum sensing inhibition or quorum quenching has been pursued as one of such novel strategies. While antibiotics kill or slow down the growth of bacteria, quorum sensing inhibitors (QSIs) or quorum quenchers (QQs) attenuate bacterial virulence. A large body of work on QS has been carried out in deadly pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio fischeri, V. harveyi, Escherichia coli and V. cholerae etc to unravel the mechanisms of QS as well as identify and study QSIs. This review describes various aspects of QS, QSI, different model systems to study these phenomena and recent patents on various QSIs. It suggests QSIs as attractive alternatives for controlling human, animal and plant pathogens and their utility in agriculture and other industries.
we made the first-ever successful effort from India to detect the genetic material of SARS-CoV-2 viruses to understand the capability and application of WBE surveillance in India. Sampling was carried out on 8 and 27 May 2020 from Old Pirana Waste Water Treatment Plant (WWTP) at Ahmedabad, Gujarat with 106 million liters per day (MLD) capacity receiving effluent of Civil Hospital treating COVID-19 patient. All three i.e. ORF1ab, N and S genes of SARS-CoV-2 were discerned in the influents with no gene spotted in the effluent collected on 8 and 27 May 2020. Temporal difference between 8 and 27 May 2020 samples was of 10x in gene copy loading with a corresponding change of 2x in the number active COVID-19 patient in the city. Number of gene copies was found comparable to that reported in the untreated wastewaters of Australia, China, and Turkey and lower than that of the USA, France, and Spain. This study, being the first from India and probably among the first ten reports in the world of gene detection of SARS-CoV-2 in the environmental samples, aims to assist concerned authorities and policymakers to formulate and/or upgrade the COVID-19 surveillance to have an explicit picture of the phase of the pandemic. While infectious SARS-CoV-2 has yet to be identified in the aquatic environment, the virus potentially enters the wastewater stream from patient excretions and thus can be a great tool for pandemic monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.