BackgroundDespite increasing ethical standards for conducting animal research, death is still often used as an endpoint in mouse sepsis studies. Recently, the Murine Sepsis Score (MSS), Mouse Clinical Assessment Score for Sepsis (M-CASS), and Mouse Grimace Scale (MGS) were developed as surrogate endpoint scoring systems for assessing pain and disease severity in mice. The objective of our study was to compare the effectiveness of these scoring systems and monitoring of body temperature for predicting disease progression and death in the cecal ligation and puncture (CLP) sepsis model, in order to better inform selection of surrogate endpoints for death in experimental sepsis.MethodsC57Bl/6J mice were subjected to control sham surgery, or moderate or severe CLP sepsis. All mice were monitored every 4 h for surrogate markers of death using modified versions of the MSS, M-CASS, and MGS scoring systems until 24 h post-operatively, or until endpoint (inability to ambulate) and consequent euthanasia.ResultsThirty percent of mice subjected to moderate severity CLP reached endpoint by 24 h post-CLP, whereas 100% undergoing severe CLP reached endpoint within 20 h. Modified MSS, M-CASS, and MGS scores all increased, while body temperature decreased, in a time-dependent and sepsis severity-dependent manner, although modified M-CASS scores showed substantial variability. Receiver operating characteristic curves demonstrate that the last recorded body temperature (AUC = 0.88; 95% CI 0.77–0.99), change in body temperature (AUC = 0.89; 95% CI 0.78–0.99), modified M-CASS (AUC = 0.93; 95% CI 0.85–1.00), and modified MSS (AUC = 0.95; 95% CI 0.88–1.01) scores are all robust for predicting death in CLP sepsis, whereas modified MGS (AUC = 0.78; 95% CI 0.63–0.92) is less robust.ConclusionsThe modified MSS and body temperature are effective markers for assessing disease severity and predicting death in the CLP model, and should thus be considered as valid surrogate markers to replace death as an endpoint in mouse CLP sepsis studies.
Background: Excessive production of neutrophil extracellular traps (NETs) in sepsis contributes to vascular occlusion by acting as a scaffold and stimulus for thrombus formation. Removal of extracellular DNA, the major structural component of NETs, by DNase I may reduce host injury. Objectives: (1)To determine how heparin variants (unfractionated heparin, enoxaparin, Vasoflux, and fondaparinux) affect DNase I activity, (2)to measure temporal changes in circulating DNA and DNase I in septic patients. Methods: DNA-histone complexes were treated with DNase I AE heparin variants and visualized via agarose gels. We compared the ability of DNase I AE heparin variants to digest NETs released by phorbol 12myristate 13-acetate-stimulated neutrophils versus DNA-histone complexes released by necrotic HEK293 cells. Plasma DNA and DNase I levels were measured longitudinally in 76 septic patients. Results: Heparin enhances DNase I-mediated digestion of DNA-histone complexes in a size-dependent manner that does not require the antithrombin-binding region. In contrast, DNase I alone was able to degrade the DNA-histone component of NETs presumably due to peptidylarginine deiminase 4 (PAD4)-mediated histone citrullination that weakens DNA-histone interactions. In purified systems, PAD4 treatment of DNA-histone complexes enhanced the ability of DNase I to degrade histone-bound DNA. In septic patients, endogenous DNase I levels remained persistently low over 28 days, and there were no significant correlations between DNA and DNase I levels. Conclusion: Heparin enhances DNA-mediated digestion of DNA-histone complexes in a sizedependent manner that is independent of its anticoagulant properties. Citrullination of histones by PAD4 renders DNAhistone complexes susceptible to DNase I digestion. Endogenous DNase I levels are persistently decreased in septic patients, which supports the potential utility of DNase I as a therapy for sepsis.
Despite decades of preclinical research, no experimentally derived therapies for sepsis have been successfully adopted into routine clinical practice. Factors that contribute to this crisis of translation include poor representation by preclinical models of the complex human condition of sepsis, bias in preclinical studies, as well as limitations of single-laboratory methodology. To overcome some of these shortcomings, multicentre preclinical studies—defined as a research experiment conducted in two or more research laboratories with a common protocol and analysis—are expected to maximize transparency, improve reproducibility, and enhance generalizability. The ultimate objective is to increase the efficiency and efficacy of bench-to-bedside translation for preclinical sepsis research and improve outcomes for patients with life-threatening infection. To this end, we organized the first meeting of the National Preclinical Sepsis Platform (NPSP). This multicentre preclinical research collaboration of Canadian sepsis researchers and stakeholders was established to study the pathophysiology of sepsis and accelerate movement of promising therapeutics into early phase clinical trials. Integrated knowledge translation and shared decision-making were emphasized to ensure the goals of the platform align with clinical researchers and patient partners. 29 participants from 10 independent labs attended and discussed four main topics: (1) objectives of the platform; (2) animal models of sepsis; (3) multicentre methodology and (4) outcomes for evaluation. A PIRO model (predisposition, insult, response, organ dysfunction) for experimental design was proposed to strengthen linkages with interdisciplinary researchers and key stakeholders. This platform represents an important resource for maximizing translational impact of preclinical sepsis research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.