Arsenic poisoning has been a major concern that causes severe toxicological damages. Therefore, intricate and inclusive understanding of arsenic flux rates is required to ascertain the cellular concentration and establish the carcinogenetic mechanism of this toxicant at real time. The lack of sufficiently sensitive sensing systems has hampered research in this area. In this study, we constructed a fluorescent resonance energy transfer (FRET)-based nanosensor, named SenALiB (Sensor for Arsenic Linked Blackfoot disease) which contains a metalloregulatory arsenic-binding protein (ArsR) as the As 3+ sensing element inserted between the FRET pair enhanced cyan fluorescent protein (ECFP) and Venus. SenALiB takes advantage of the ratiometic FRET readout which measures arsenic with high specificity and selectivity. SenALiB offers rapid detection response, is stable to pH changes and provides highly accurate, real-time optical readout in cell-based assays. SenALiB-676n with a binding constant ( K d ) of 0.676 × 10 −6 M is the most efficient affinity mutant and can be a versatile tool for dynamic measurement of arsenic concentration in both prokaryotes and eukaryotes in vivo in a non-invasive manner.
Silver is commonly used in wound dressing, photography, health care products, laboratories, pharmacy, biomedical devices, and several industrial purposes. Silver (Ag+) ions are more toxic pollutants widely scattered in the open environment by natural processes and dispersed in soil, air, and water bodies. Ag+ binds with metallothionein, macroglobulins, and albumins, which may lead to the alteration of various enzymatic metabolic pathways. To analyze the uptake and metabolism of silver ions in vitro as well as in cells, a range of high-affinity fluorescence-based nanosensors has been constructed using a periplasmic protein CusF, a part of the CusCFBA efflux complex, which is involved in providing resistance against copper and silver ions in Escherichia coli. This nanosensor was constructed by combining of two fluorescent proteins (donor and acceptor) at the N- and C-terminus of the silver-binding protein (CusF), respectively. SenSil (WT) with a binding constant (K d) of 5.171 μM was more efficient than its mutant variants (H36D and F71W). This nanosensor allows monitoring the level of silver ions in real time in prokaryotes and eukaryotes without any disruption of cells or tissues.
Nitrate (NO3 –) is a critical source of nitrogen (N) available to microorganisms and plants. Nitrate sensing activates signaling pathways in the plant system that impinges upon, developmental, molecular, metabolic, and physiological responses locally, and globally. To sustain, the high crop productivity and high nutritional value along with the sustainable environment, the study of rate-controlling steps of a metabolic network of N assimilation through fluxomics becomes an attractive strategy. To monitor the flux of nitrate, we developed a non-invasive genetically encoded fluorescence resonance energy transfer (FRET)-based tool named “FLIP-NT” that monitors the real-time uptake of nitrate in the living cells. The developed nanosensor is suitable for real-time monitoring of nitrate flux in living cells at subcellular compartments with high spatio-temporal resolution. The developed FLIP-NT nanosensor was not affected by the pH change and have specificity for nitrate with an affinity constant (K d) of ∼5 μM. A series of affinity mutants have also been generated to expand the physiological detection range of the sensor protein with varying K d values. It has been found that this sensor successfully detects the dynamics of nitrate fluctuations in bacteria and yeast, without the disruption of cellular organization. This FLIP-NT nanosensor could be a very important tool that will help us to advance the understanding of nitrate signaling.
Since the last decade, a lot of advancement has been made to understand biological processes involving complex intracellular pathways. The major challenge faced was monitoring and trafficking of metabolites in real time. Although a range of quantitative and imaging techniques have been developed so far, the discovery of green fluorescent proteins (GFPs) has revolutionized the advancement in the field of metabolomics. GFPs and their variants have enabled researchers to 'paint' a wide range of biological molecules. Fluorescence resonance energy transfer (FRET)-based genetically encoded sensors is a promising technology to decipher the real-time monitoring of the cellular events inside living cells. GFPs and their variants, due to their intrinsic fluorescence properties, are extensively being used nowadays in cell-based assays. This review focuses on structure and function of GFP and its derivatives, mechanism emission and their use in the development of FRET-based sensors for metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.