Clitoria ternatea a perennial climber of the Fabaceae family, is well known for its agricultural and medical applications. It is also currently the only known member of the Fabaceae family that produces abundant amounts of the ultra-stable macrocyclic peptides, cyclotides, across all tissues. Cyclotides are a class of gene-encoded, disulphide-rich, macrocyclic peptides (26-37 residues) acting as defensive metabolites in several plant species. Previous transcriptomic studies have demonstrated the genetic origin of cyclotides from the Fabaceae plant family to be embedded in the albumin-1 genes, unlike its counterparts in other plant families. However, the complete mechanism of its biosynthesis and the repertoire of enzymes involved in cyclotide folding and processing remains to be understood. In this study, using RNA-Seq data and de novo transcriptome assembly of Clitoria ternatea, we have identified 71 precursor genes of cyclotides. Out of 71 unique cyclotide precursor genes obtained, 51 sequences display unique cyclotide domains, of which 26 are novel cyclotide sequences, arising from four individual tissues. MALDI-TOF mass spectrometry analysis of fractions from different tissue extracts, coupled with precursor protein sequences obtained from transcriptomic data, established the cyclotide diversity in this plant species. Special focus in this study has also been on identifying possible enzymes responsible for proper folding and processing of cyclotides in the cell. Transcriptomic mining for oxidative folding enzymes such as protein-disulphide isomerases (PDI), ER oxidoreductin-1 (ERO1) and peptidylprolyl cis-trans isomerases (PPIases)/cyclophilins, and their levels of expression are also reported. In particular, it was observed that the CtPDI genes formed plant-specific clusters among PDI genes as compared to those from other plant species. Collectively, this work provides insights into the biogenesis of the medicinally important cyclotides and establishes the expression of certain key enzymes participating in peptide biosynthesis. Also, several novel cyclotide sequences are reported and precursor sequences are analysed in detail. In the absence of a published reference genome, a comprehensive transcriptomics approach was adopted to provide an overview of diverse properties and constituents of C. ternatea. Macrocyclics such as the cyclotides are a class of cyclic peptides (26-37 residues) containing three disulphide bonds. They are formed by cyclization of a gene encoded, linear precursor in specific plant species. In addition to the circular backbone, they form a cyclic cystine knot (CCK) arrangement formed by a conserved six cysteine framework (Cys I-Cys IV, Cys II-Cys V, Cys III-Cys VI) 1-3. This knotted arrangement along with the circular backbone, renders these cyclotides exceptionally stable against enzymatic, chemical and thermal degradation, with their principal function thought to be in plant defense 4. Thus, cyclotides are potential candidates for peptide-based drugs; either as scaffolds to stabilize s...
The Ramachandran map clearly delineates the regions of accessible conformational (φ-ψ) space for amino acid residues in proteins. Experimental distributions of φ, ψ values in high-resolution protein structures, reveal sparsely populated zones within fully allowed regions and distinct clusters in apparently disallowed regions. Conformational space has been divided into 14 distinct bins. Residues adopting these relatively rare conformations are presented and amino acid propensities for these regions are estimated. Inspection of specific examples in a completely "arid", fully allowed region in the top left quadrant establishes that side-chain and backbone interactions may provide the energetic compensation necessary for populating this region of φ-ψ space. Asn, Asp, and His residues showed the highest propensities in this region. The two distinct clusters in the bottom right quadrant which are formally disallowed on strict steric considerations correspond to the gamma turn (C7 axial) conformation (Bin 12) and the i + 1 position of Type II' β turns (Bin 13). Of the 516 non-Gly residues in Bin 13, 384 occupied the i + 1 position of Type II' β turns. Further examination of these turn segments revealed a high propensity to occur at the N-terminus of helices and as a tight turn in β hairpins. The β strand-helix motif with the Type II' β turn as a connecting element was also found in as many as 57 examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.