Background: Syzygium cumini L., commonly known as Jamun, black-plum, and Indian blackberry, is one of the most widely distributed trees in India with booming medical benefits and possesses antioxidant, anticancer and anti-diabetic properties. It belongs to the family Myrtaceae. Despite countless phytochemicals, seeds are not consumed and are the waste part of Jamun fruit. Objective: The objective of this study was to evaluate the antioxidant capacity of phenolics from Jamun seeds against a bundle of oxidant moieties. Methods: The 50% acetone extract of Jamun seeds was investigated for in-vitro antioxidant profiling. Assays include free radical scavenging activity, metal chelation activity, hydroxyl radical scavenging activity, hydrogen peroxide scavenging activity, total antioxidant activity, total reducing power, nitric oxide scavenging activity, and lipid peroxidation inhibition activity. Results: The extract depicted maximum DPPH radical scavenging activity followed by ABTS radical scavenging activity. Hefty metal chelation and nitric oxide scavenging activity were recorded while lipid peroxidation, H2O2, and OH- scavenging activity was intermediate. Conclusion: Jamun seed showed ample antioxidant activity and certifies that it is the right candidate for exploitation as a source of natural antioxidants to counteract autoxidation-induced pathologies or diseases.
The present pandemic situation has increased the demand for plant-based functional foods that enhancing the immunity of all aged groups against COVID-19. This factor has led to innovation in confectionery market because healthy and good quality confectionery products are lacking. In this study, an attempt has been made to develop functional candy from various combinations of banana, ginger, skim milk powder, and honey at 2-10% and evaluated its sensory, nutraceutical, functional properties and microbial stability for 60 days. Among various combinations of banana and ginger pulp, candy prepared from 96:6 w/w (banana: ginger) ratio was found better than other combinations in respect to organoleptic and nutritional quality. Ginger and skim milk powder addition increased the contents of protein (4.54%), ash (2.82%), phenolic (8.59 mgGAE/g), flavonoid (2.43 mQ/g), and antioxidant activity (36.15% DPPH activity) of functional candy. Microbial studies of functional candy revealed it could be stored up to 60 days without microbial contamination and acceptable by the consumer. The cost of functional candy was Rs.1.53 per candy, which was less than market candy. This study showed that candy manufactured from banana, ginger, skim milk powder, and honey was nutritionally and economical improved with acceptable sensory properties. Developed functional candy increases the market's revenue and enables confectionary market to develop a new candy type.
Biomaterials are designed to interact with biological systems in aid to wound healing, regeneration of tissue, mechanical support, and drug delivery to eventually improve current therapeutic outcomes. The adoption of biomaterials is increasing constantly in health care practices by making it more biocompatible and non-toxic under physiological conditions. These adoptions have been associated with improvements in therapeutic outcomes across the population, however, the dosage of therapeutics needed to successfully treat a disease is generally different for each individual and relies a lot on experiences of consultant doctors. Many times, it leads to human errors in deciding on drug doses, un-fit implants and explants and eventually adverse effects or less positive effects. The personalized medicine and devices bring forth the idea that the medicine should be tailored for a patient based on various characteristics, such as gender, age, genetic makeup, and lifestyle. These personalized medicine approaches include type of drugs, activation methods, nanoassemblies, biomedical devices, etc. Among these approaches, personalized biomedical devices have become popular with the advent of 3D printing technologies, which can make customized implants for each patient with minimum price, limited time, and high accuracy. Personalized biomedicine also involves designing of drug to cater the need of an individual with minimum side effects. In this review an effort has been made to introduce different aspects of customized biomedical agents like therapeutic biomolecules, nanomedicine, implants, and explants. This comprehensive review of literature indicates that use of 3D printing technology in producing drug releasing, biodegradable personalized implants could be better therapeutic solution for a range of medical conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.