In our daily lives, humans perform different Activities of Daily Living (ADL), such as cooking, and studying. According to the nature of humans, they perform these activities in a sequential/simple or an overlapping/complex scenario. Many research attempts addressed simple activity recognition, but complex activity recognition is still a challenging issue. Recognition of complex activities is a multilabel classification problem, such that a test instance is assigned to a multiple overlapping activities. Existing data-driven techniques for complex activity recognition can recognize a maximum number of two overlapping activities and require a training dataset of complex (i.e. multilabel) activities. In this paper, we propose a multilabel classification approach for complex activity recognition using a combination of Emerging Patterns and Fuzzy Sets. In our approach, we require a training dataset of only simple (i.e. single-label) activities. First, we use a pattern mining technique to extract discriminative features called Strong Jumping Emerging Patterns (SJEPs) that exclusively represent each activity. Then, our scoring function takes SJEPs and fuzzy membership values of incoming sensor data and outputs the activity label(s). We validate our approach using two different dataset. Experimental results demonstrate the efficiency and superiority of our approach against other approaches.
The treatment and diagnosis of colon cancer are considered to be social and economic challenges due to the high mortality rates. Every year, around the world, almost half a million people contract cancer, including colon cancer. Determining the grade of colon cancer mainly depends on analyzing the gland’s structure by tissue region, which has led to the existence of various tests for screening that can be utilized to investigate polyp images and colorectal cancer. This article presents a comprehensive survey on the diagnosis of colon cancer. This covers many aspects related to colon cancer, such as its symptoms and grades as well as the available imaging modalities (particularly, histopathology images used for analysis) in addition to common diagnosis systems. Furthermore, the most widely used datasets and performance evaluation metrics are discussed. We provide a comprehensive review of the current studies on colon cancer, classified into deep-learning (DL) and machine-learning (ML) techniques, and we identify their main strengths and limitations. These techniques provide extensive support for identifying the early stages of cancer that lead to early treatment of the disease and produce a lower mortality rate compared with the rate produced after symptoms develop. In addition, these methods can help to prevent colorectal cancer from progressing through the removal of pre-malignant polyps, which can be achieved using screening tests to make the disease easier to diagnose. Finally, the existing challenges and future research directions that open the way for future work in this field are presented.
In recent years, underwater exploration for deep-sea resource utilization and development has a considerable interest. In an underwater environment, the obtained images and videos undergo several types of quality degradation resulting from light absorption and scattering, low contrast, color deviation, blurred details, and nonuniform illumination. Therefore, the restoration and enhancement of degraded images and videos are critical. Numerous techniques of image processing, pattern recognition and computer vision have been proposed for image restoration and enhancement, but many challenges remain. This survey presents a comparison of the most prominent approaches in underwater image processing and analysis. It also discusses an overview of the underwater environment with a broad classification into enhancement and restoration techniques and introduces the main underwater image degradation reasons in addition to the underwater image model. The existing underwater image analysis techniques, methods, datasets, and evaluation metrics are presented in detail. Furthermore, the existing limitations are analyzed, which are classified into image-related and environment-related categories. In addition, the performance is validated on images from the UIEB dataset for qualitative, quantitative, and computational time assessment. Areas in which underwater images have recently been applied are briefly discussed. Finally, recommendations for future research are provided and the conclusion is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.