Functional measurement analyses and psychophysical techniques were used to assess how separate, cross-modal, aversive events are integrated in judgements of pain. Subjects made magnitude estimations of noxious stimuli produced by a 6 X 6 factorial design of electric shocks and loud tones. Group data and most of the individual results were consistent with a model of linear pain summation: The estimates of pain approximated the linear sum of the pain estimates of the individual electrocutaneous and auditory components. The relation between painful sensation and current intensity could be described by a mildly expansive power function with an exponent of about 1.1. Auditorily produced painful sensation related to sound pressure level by a mildly compressive power function with an exponent of about 0.90 as a representative figure. Results are interpreted in terms of a functional theory of pain. Noxious events are first transformed to psychological scale values via stimulus-specific psychophysical transfer functions. The outputs of these functions are then combined with other pain-related internal representations of either sensory or cognitive origin, according to simple algebraic models.
Subjects made magnitude estimations of noxious stimuli produced by a 6 X 6 factorial design of electric shocks (pulse trains) and loud tones. Group data and all individual results conformed to a linear additive model of pain. The estimates of pain approximated the linear sum of the pain estimates of the individual electrocutaneous and auditory components. Pain related differently to the two inducing stimuli. It grew as a mildly expansive power function of current intensity (with an exponent of about 1.2) but as a mildly compressive power function of sound-pressure level (with an exponent of about 0.8). These results replicate recent findings by the same authors in 1986 using a more aversive type of electric stimulation. They are interpreted as supportive of a new functional approach to understand pain and pain-related phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.