Visualizing and quantifying molecular motion and interactions inside living cells provides crucial insight into the mechanisms underlying cell function. This has been achieved by super-resolution localization microscopy and single-molecule tracking in conjunction with photoactivatable fluorescent proteins (PA-FPs). An alternative labelling approach relies on genetically-encoded protein tags with cell-permeable fluorescent ligands which are brighter and less prone to photobleaching than fluorescent proteins but require a laborious labelling process. Either labelling method is associated with significant advantages and disadvantages that should be taken into consideration depending on the microscopy experiment planned. Here, we describe an optimised procedure for labelling Halo-tagged proteins in live Escherichia coli cells. We provide a side-by-side comparison of Halo tag with different fluorescent ligands against the popular photoactivatable fluorescent protein PAmCherry. Using test proteins with different intracellular dynamics, we evaluated fluorescence intensity, background, photostability, and results from single-molecule localization and tracking experiments. Capitalising on the brightness and extended spectral range of fluorescent Halo ligands, we also demonstrate high-speed and dual-colour single-molecule tracking.
Visualizing and quantifying molecular motion and interactions inside living cells provides crucial insight into the mechanisms underlying cell function. This has been achieved by super-resolution localization microscopy and single-molecule tracking in conjunction with photoactivatable fluorescent proteins. An alternative labelling approach relies on genetically-encoded protein tags with cell-permeable fluorescent ligands which are brighter and less prone to photobleaching than fluorescent proteins but require a laborious labelling process. Either labelling method is associated with significant advantages and disadvantages that should be taken into consideration depending on the microscopy experiment planned. Here, we describe an optimised procedure for labelling Halo-tagged proteins in live Escherichia coli cells. We provide a side-by-side comparison of Halo tag with different fluorescent ligands against the popular photoactivatable fluorescent protein PAmCherry. Using test proteins with different intracellular dynamics, we evaluated fluorescence intensity, background, photostability, and single-molecule localization and tracking results. Capitalising on the brightness and extended spectral range of fluorescent Halo ligands, we also demonstrate high-speed and dual-colour single-molecule tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.