Summary
Non-coding mutations at the far end of a large gene desert surrounding the
SOX9
gene result in a human craniofacial disorder called Pierre Robin sequence (PRS). Leveraging a human stem cell differentiation model, we identify two clusters of enhancers within the PRS-associated region that regulate
SOX9
expression during a restricted window of facial progenitor development at distances up to 1.45 Mb. Enhancers within the 1.45 Mb cluster exhibit highly synergistic activity that is dependent on the Coordinator motif. Using mouse models, we demonstrate that PRS phenotypic specificity arises from the convergence of two mechanisms: confinement of
Sox9
dosage perturbation to developing facial structures through context-specific enhancer activity and heightened sensitivity of the lower jaw to
Sox9
expression reduction. Overall, we characterize the longest-range human enhancers involved in congenital malformations, directly demonstrate that PRS is an enhanceropathy, and illustrate how small changes in gene expression can lead to morphological variation.
SUMMARY
Histone post-translational modifications (PTMs) are important genomic regulators often studied by chromatin immunoprecipitation (ChIP), whereby their locations and relative abundance are inferred by antibody capture of nucleosomes and associated DNA. However, the specificity of antibodies within these experiments have not been systematically studied. Here, we use histone peptide arrays and internally calibrated ChIP (ICeChIP) to characterize 52 commercial antibodies purported to distinguish the H3K4 methylforms (me1, me2, and me3, with each ascribed distinct biological functions). We find that many widely-used antibodies poorly distinguish the methylforms and that high- and low-specificity reagents can yield dramatically different biological interpretations, resulting in substantial divergence from the literature for numerous H3K4 methylform paradigms. Using ICeChIP, we also discern quantitative relationships between enhancer H3K4 methylation and promoter transcriptional output and can measure global PTM abundance changes. Our results illustrate how poor antibody specificity contributes to the “reproducibility crisis,” demonstrating the need for rigorous, platform-appropriate validation.
Zinc finger protein Zscan4 is selectively expressed in mouse two-cell (2C) embryos undergoing zygotic genome activation (ZGA) and in a rare subpopulation of embryonic stem cells with 2C-like features. Here, we show that Zscan4 specifically recognizes a subset of (CA)n microsatellites, repeat sequences prone to genomic instability. Zscan4-associated microsatellite regions are characterized by low nuclease sensitivity and high histone occupancy. In vitro, Zscan4 binds nucleosomes and protects them from disassembly upon torsional strain. Furthermore, Zscan4 depletion leads to elevated DNA damage in 2C mouse embryos in a transcription-dependent manner. Together, our results identify Zscan4 as a DNA sequence–dependent microsatellite binding factor and suggest a developmentally regulated mechanism, which protects fragile genomic regions from DNA damage at a time of embryogenesis associated with high transcriptional burden and genomic stress.
Renal biopsy provides useful diagnostic information to differentiate intrinsic renal disease from renal hypoperfusion and helps guide the decision for OHT alone versus combined HKT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.