SummaryMLL-AF4+ infant B cell acute lymphoblastic leukemia is characterized by an early onset and dismal survival. It initiates before birth, and very little is known about the early stages of the disease’s development. Using a conditional Mll-AF4-expressing mouse model in which fusion expression is targeted to the earliest definitive hematopoietic cells generated in the mouse embryo, we demonstrate that Mll-AF4 imparts enhanced B lymphoid potential and increases repopulation and self-renewal capacity during a putative pre-leukemic state. This occurs between embryonic days 12 and 14 and manifests itself most strongly in the lymphoid-primed multipotent progenitor population, thus pointing to a window of opportunity and a potential cell of origin. However, this state alone is insufficient to generate disease, with the mice succumbing to B cell lymphomas only after a long latency. Future analysis of the molecular details of this pre-leukemic state will shed light on additional events required for progression to acute leukemia.
Advances in genomic diagnostics hold promise for improved care of rare hematologic diseases. Here we describe a novel targeted therapeutic approach for Ghosal hematodiaphyseal dysplasia, an autosomal recessive disease characterized by severe normocytic anemia and bone abnormalities due to loss-of-function mutations in Thromboxane A Synthase 1 (TBXAS1). TBXAS1 metabolizes prostaglandin (PG)H2, the cyclooxygenase (COX) product of arachidonic acid, into thromboxane A2. Loss-of-function in TBXAS results in an increase in PGH2 availability for other PG synthases. Current treatment for Ghosal syndrome consists of corticosteroids. We hypothesized that non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit COX-1 and COX-2, could ameliorate the effects of TBXAS1 loss and improve hematologic function by reducing prostaglandin formation. We treated two patients with Ghosal syndrome, one adult and one pediatric, with standard doses of NSAIDs (aspirin or ibuprofen). Both patients had rapid improvement of hematologic parameters and inflammatory markers without adverse events. Mass spectrometry analysis demonstrated that urinary PG metabolites were increased along with proinflammatory lipoxygenase (LOX) products 5-Hydroxyeicosatetraenoic acid and leukotriene E4. Our data show that NSAIDs at standard doses surprisingly reduced both COX and LOX products, leading to the resolution of cytopenias, and should be considered for first-line treatment for Ghosal syndrome.
Despite the frequent use and radiation exposure of computed tomography (CT) scans, there is little information on patterns of CT use and their utility in the management of pediatric patients with fever and neutropenia (FN). We examined the contribution of either the commonly employed pan-CT (multiple anatomical locations) or targeted CT (single location) scanning to identify possible infectious etiologies in this challenging clinical scenario. Procedure Pediatric patients with an underlying malignancy admitted for fever (temperature ≥ 38.3 °C) and an absolute neutrophil count <500 cells/μL from 2003-2009 were included. Risk factors associated with utilization, results, and effects on clinical management of CT scans were identified. Results Charts for 635 admissions for FN from 263 patients were reviewed. Overall, 139 (22%) admissions (93 individuals) had at least one scan. Of 188 scans, 103 (55%) were pan-scans. Changes in management were most strongly associated with the identification of evidence consistent with infection (OR = 12.64, 95% CI: 5.05-31.60, P < 0.001). Seventy-eight (41%) of all CT scans led to a change in clinical management, most commonly relating to use of antibiotic (N = 41, 53%) or antifungal/antiviral medications (N = 33, 42%). The odds of a change in clinical management did not differ for those receiving a pan-scan compared to those receiving a targeted scan (OR = 1.23; 95% CI, 0.61-2.46; P = 0.57). Conclusions When CT is clinically indicated, it is important for clinicians to strongly consider utilizing a targeted scan to reduce radiation exposure to patients as well as to decrease costs without compromising care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.