Although it is generally recognized that cystic fibrosis transmembrane conductance regulator (CFTR) contains a PSD-95/Disc-large/ZO-1 (PDZ)-binding motif at its COOH terminus, the identity of the PDZ domain protein(s) that interact with CFTR is uncertain, and the functional impact of this interaction is not fully understood. By using human airway epithelial cells, we show that CFTR associates with Na ؉ /H ؉ exchanger (NHE) type 3 kinase A regulatory protein (E3KARP), an EBP50/ NHE regulatory factor (NHERF)-related PDZ domain protein. The PDZ binding motif located at the COOH terminus of CFTR interacts preferentially with the second PDZ domain of E3KARP, with nanomolar affinity. In contrast to EBP50/NHERF, E3KARP is predominantly localized (>95%) in the membrane fractions of Calu-3 and T84 cells, where CFTR is located. Moreover, confocal immunofluorescence microscopy of polarized Calu-3 monolayers shows that E3KARP and CFTR are co-localized at the apical membrane domain. We also found that ezrin associates with E3KARP in vivo. Co-expression of CFTR with E3KARP and ezrin in Xenopus oocytes potentiated cAMP-stimulated CFTR Cl ؊ currents. These results support the concept that E3KARP functions as a scaffold protein that links CFTR to ezrin. Since ezrin has been shown previously to function as a protein kinase A anchoring protein, we suggest that one function served by the interaction of E3KARP with both ezrin and CFTR is to localize protein kinase A in the vicinity of the R-domain of CFTR. Since ezrin is also an actinbinding protein, the formation of a CFTR⅐E3KARP⅐ezrin complex may be important also in stabilizing CFTR at the apical membrane domain of airway cells.
In the current climate of curriculum reform, the traditional lecture has come under fire for its perceived lack of effectiveness. Indeed, several institutions have reduced their lectures to 15 min in length based upon the "common knowledge" and "consensus" that there is a decline in students' attention 10-15 min into lectures. A review of the literature on this topic reveals many discussions referring to prior studies but scant few primary investigations. Alarmingly, the most often cited source for a rapid decline in student attention during a lecture barely discusses student attention at all. Of the studies that do attempt to measure attention, many suffer from methodological flaws and subjectivity in data collection. Thus, the available primary data do not support the concept of a 10- to 15-min attention limit. Interestingly, the most consistent finding from a literature review is that the greatest variability in student attention arises from differences between teachers and not from the teaching format itself. Certainly, even the most interesting material can be presented in a dull and dry fashion, and it is the job of the instructor to enhance their teaching skills to provide not only rich content but also a satisfying lecture experience for the students.
The gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) is defective in patients with cystic fibrosis. Although the protein product of the CFTR gene has been proposed to function as a chloride ion channel, certain aspects of its function remain unclear. The role of CFTR in the adenosine 3',5'-monophosphate (cAMP)-dependent regulation of plasma membrane recycling was examined. Adenosine 3',5'-monophosphate is known to regulate endocytosis and exocytosis in chloride-secreting epithelial cells that express CFTR. However, mutant epithelial cells derived from a patient with cystic fibrosis exhibited no cAMP-dependent regulation of endocytosis and exocytosis until they were transfected with complementary DNA encoding wild-type CFTR. Thus, CFTR is critical for cAMP-dependent regulation of membrane recycling in epithelial tissues, and this function of CFTR could explain in part the pleiotropic nature of cystic fibrosis.
Do you know the sex of your cells? Not a question that is frequently heard around the lab bench, yet thanks to recent research is probably one that should be asked. It is self-evident that cervical epithelial cells would be derived from female tissue and prostate cells from a male subject (exemplified by HeLa and LnCaP, respectively), yet beyond these obvious examples, it would be true to say that the sex of cell lines derived from non-reproductive tissue, such as lung, intestine, kidney, for example, is given minimal if any thought. After all, what possible impact could the presence of a Y chromosome have on the biochemistry and cell biology of tissues such as the exocrine pancreatic acini? Intriguingly, recent evidence has suggested that far from being irrelevant, genes expressed on the sex chromosomes can have a marked impact on the biology of such diverse tissues as neurons and renal cells. It is also policy of AJP-Cell Physiology that the source of all cells utilized (species, sex, etc.) should be clearly indicated when submitting an article for publication, an instruction that is rarely followed (http://www.the-aps.org/mm/Publications/Info-For-Authors/Composition). In this review we discuss recent data arguing that the sex of cells being used in experiments can impact the cell's biology, and we provide a table outlining the sex of cell lines that have appeared in AJP-Cell Physiology over the past decade.
The octameric exocyst complex is associated with the junctional complex and recycling endosomes and is proposed to selectively tether cargo vesicles directed toward the basolateral surface of polarized Madin-Darby canine kidney (MDCK) cells. We observed that the exocyst subunits Sec6, Sec8, and Exo70 were localized to early endosomes, transferrin-positive common recycling endosomes, and Rab11a-positive apical recycling endosomes of polarized MDCK cells. Consistent with its localization to multiple populations of endosomes, addition of function-blocking Sec8 antibodies to streptolysin-Opermeabilized cells revealed exocyst requirements for several endocytic pathways including basolateral recycling, apical recycling, and basolateral-to-apical transcytosis. The latter was selectively dependent on interactions between the small GTPase Rab11a and Sec15A and was inhibited by expression of the C-terminus of Sec15A or down-regulation of Sec15A expression using shRNA. These results indicate that the exocyst complex may be a multipurpose regulator of endocytic traffic directed toward both poles of polarized epithelial cells and that transcytotic traffic is likely to require Rab11a-dependent recruitment and modulation of exocyst function, likely through interactions with Sec15A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.