Greywater has been identified as a key area of research in South Africa owing to the fact that service delivery in low-income areas largely consists of on-site dry sanitation with communal water points where greywater has the potential to create a host of environmental and health problems. The main aim of this study was to investigate the use and disposal of greywater in non-sewered areas in South Africa and this included developing options for the management thereof, both in terms of reducing health and environmental risks as well as possibly providing benefits through controlled reuse. This paper reports on observations made in the course of a two-year study that examined greywater management in 39 low-income non-sewered settlements situated in 6 of the 9 provinces. Proposals are made for the selection of various greywater management options as well as guidance for the planning for, and handling of, greywater from low-income areas.
Poor service provision in developing countries, and particularly the provision of water-related services, present serious challenges to urban development. It is estimated that 300 m. people in Africa do not have access to safe drinking water and 313 m. have limited access to adequate sanitation. The critical situation in the water sector continues to undermine strategies for poverty eradication and retards development. It is possible that the failure in service provision can in part be attributed to an inability by policy makers to address urban water management in a holistic manner. In this study, a systems approach has been adopted to develop a composite index that could be used to assess the potential of a town or city to be sustainable. This index, the Sustainability Index for Integrated Urban Water Management (SIUWM) is composed of 5 components which disaggregate into 20 indicators and ultimately into 64 variables. Two Southern African urban centres, Hermanus and Maputo, were selected as initial case studies to test the applicability and validity of the index and to compare their sustainability index scores. Results of the SIUWM application demonstrate that the index could highlight areas for improvement and ultimately guide appropriate action and policy-making towards better service delivery and improved resource management.
By 2030 South Africa (SA), a developing country, is predicted to be severely impacted by physical water scarcity. In order to avert a future water crisis, the country needs to find ways to reduce its reliance on conventional surface water schemes based on impoundments on rivers. Rainwater harvesting (RWH) is an alternative water resource. To date, the viability of domestic RWH within an urban setting has not been adequately considered in SA. The purpose of this study was thus to address this omission through the detailed modelling of a representative catchment. The Liesbeek River Catchment in Cape Towncomprising some 6 200 domestic properties in 6 suburbs covering an area of around 1 300 ha -was chosen for this purpose; and a new computational tool, the Urban Rainwater/Stormwater Harvesting model (URSHM), was developed to take best advantage of the available data. The analysis showed that: RWH was only economically viable for a minority of property owners; climate change is likely to have limited impact on the performance of RWH systems; and -contrary to some claims -RWH is an unreliable means of attenuating peak stormwater flows.
The drought experienced in South Africa in 2016 – one of the worst in decades – has left many urbanised parts of the country with limited access to water, and food production has been affected. If a future water crisis is to be averted, the country needs to conserve current water supplies, reduce its reliance on conventional surface water schemes, and seek alternative sources of water supply. Within urban areas, municipalities must find ways to adapt to, and mitigate the threats from, water insecurity resulting from, inter alia, droughts, climate change and increasing water demand driven by population growth and rising standards of living. Stormwater harvesting (SWH) is one possible alternative water resource that could supplement traditional urban water supplies, as well as simultaneously offer a range of social and environmental benefits. We set out three position statements relating to how SWH can: improve water security and increase resilience to climate change in urban areas; prevent frequent flooding; and provide additional benefits to society. We also identify priority research areas for the future in order to target and support the appropriate uptake of SWH in South Africa, including testing the viability of SWH through the use of real-time control and managed aquifer recharge.
As the less developed countries (LDC's) become more developed, they have experienced an exponential growth in the production of urban litter. Unfortunately few of these countries have the infrastructure to cope with the removal of this litter, and as a result it tends to end up in the water courses. Grids cannot be placed over stormwater inlets for fear of blockage and consequential flooding. Once the litter has entered the drainage system it is difficult to remove. This paper summarises the results of three years of laboratory investigations sponsored by the Water Research Commission of South Africa into the movement of urban litter through potential trapping structures. The results show substantial agreement with those of an independent investigation carried out in Australia. It concludes that declined self-cleaning screens show the greatest promise for the removal of urban litter from most stormwater conduits and streams in the LDC's.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.