Predicting personality is essential for social applications supporting human-centered activities, yet prior modeling methods with users’ written text require too much input data to be realistically used in the context of social media. In this work, we aim to drastically reduce the data requirement for personality modeling and develop a model that is applicable to most users on Twitter. Our model integrates Word Embedding features with Gaussian Processes regression. Based on the evaluation of over 1.3K users on Twitter, we find that our model achieves comparable or better accuracy than state-of-the-art techniques with 8 times fewer data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.