Isoprene is the precursor for number of alcohol, organosulfate, and organonitrate species observed in ambient secondary organic aerosol (SOA). Recent laboratory and field work has suggested that isoprene-derived epoxides may be crucial intermediates that can explain the existence of these compounds in SOA. To confirm this hypothesis, the specific hydroxy epoxides observed in gas phase isoprene photooxidation experiments (as well as several other related species) were synthesized and the bulk phase aqueous reactions of these species in the presence of sulfate and nitrate were studied via nuclear magnetic resonance (NMR) techniques. The results indicate that both primary and tertiary organosulfates and organonitrates are efficiently formed from the potential SOA reactions of isoprene-derived epoxides. However, the tertiary organonitrates are shown to undergo rapid nucleophilic substitution reactions (in which nitrate is substituted for by water or sulfate) over the whole range of SOA pH, while the tertiary organosulfates are found to undergo a much slower acid-dependent hydrolysis reaction. The primary organonitrates and organosulfates under study were found to be stable against nucleophilic substitution reactions, even at low pH. This finding provides a potential explanation for the fact that organosulfates are more commonly detected in ambient SOA than are organonitrates.
Isoprene (the most abundant nonmethane hydrocarbon emitted into the atmosphere) is known to undergo oxidation to 2-methyl-1,2,3,4-butanetetraol, a hydrophilic compound present in secondary organic aerosol (SOA) in the atmosphere. Recent laboratory work has shown that gas phase hydroxy epoxides are produced in the low NOx photooxidation of isoprene and that these epoxides are likely to undergo efficient acid-catalyzed hydrolysis on SOA to 2-methyl-1,2,3,4-butanetetraol at typical SOA acidities. In order to confirm this hypothesis, the specific hydroxy epoxides observed in the isoprene photooxidation experiment (as well as several other related species) were synthesized, and the hydrolysis kinetics of all species were studied via nuclear magnetic resonance (NMR) techniques. It was determined that the isoprene-derived hydroxy epoxides should undergo efficient hydrolysis under atmospheric conditions, particular on lower pH SOA. An empirical structure-reactivity model was constructed that parametrized the hydrolysis rate constants according to the carbon substitution pattern on the epoxide ring and number of neighboring hydroxy functional groups. Compared to the previously studied similar nonfunctionalized epoxides, the presence of a hydroxy group at the alpha position to the epoxy group was found to reduce the hydrolysis rate constant by a factor of 20, and the presence of a hydroxy group at the beta position to the epoxy group was found to reduce the hydrolysis rate constant by a factor of 6.
Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2-ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC's and E-EHMC's excited state dynamics upon UV-B photoexcitation to the S (1ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 1ππ* to the S (1nπ*) state, followed by de-excitation from the 1nπ* to the ground electronic state (S). Using both a non-polar-aprotic solvent, cyclohexane, and a polar-protic solvent, methanol, we investigated E-MMC and E-EHMC's photochemistry in a more realistic, 'closer-to-shelf' environment. A stark change to the excited state dynamics in the gas-phase is observed in the solution-phase suggesting that the dynamics are now driven by efficient E/Z isomerisation from the initially photoexcited 1ππ* state to S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.