Tropical-extratropical cloud band systems over southern Africa, known as tropical temperate troughs (TTTs), are known to contribute substantially to South African summer rainfall. This study performs a comprehensive assessment of the seasonal cycle and rainfall contribution of TTTs by using a novel object-based strategy that explicitly tracks these systems for their full life cycle. The methodology incorporates a simple assignment of station rainfall data to each event, thereby creating a database containing detailed rainfall characteristics for each TTT. This is used to explore the importance of TTTs for rain days and climatological rainfall totals in October-March. Average contributions range from 30 to 60 % with substantial spatial heterogeneity observed. TTT rainfall contributions over the Highveld and eastern escarpment are lower than expected. A short analysis of TTT rainfall variability indicates TTTs provide substantial, but not dominant, intraseasonal and interannual variability in station rainfall totals. TTTs are however responsible for a high proportion of heavy rainfall days. Of 52 extreme rainfall events in the 1979-1999 period, 30 are associated with these tropical-extratropical interactions. Cut-off lows were included in the evolution of 6 of these TTTs. The study concludes with an analysis of the question: does the Madden-Julian Oscillation influence the intensity of TTT rainfall over South Africa? Results suggest a weak but significant suppression (enhancement) of intensity during phase 1(6).
The synoptic evolution of three tropical-extratropical (TE) interactions, each responsible for extreme rainfall events over southern Africa, is discussed in detail. Along with the consideration of previously studied events, common features of these heavy rainfall producing tropical temperate troughs (TTTs) over southern Africa are discussed. It is found that 2 days prior to an event, northeasterly moisture transports across Botswana, set up by the Angola low, are diverted farther south into the semiarid region of subtropical southern Africa. The TTTs reach full maturity as a TE cloud band, rooted in the central subcontinent, which is triggered by upper-level divergence along the leading edge of an upper-tropospheric westerly wave trough. Convection and rainfall within the cloud band is supported by poleward moisture transports with subtropical air rising as it leaves the continent and joins the midlatitude westerly flow. It is shown that these systems fit within a theoretical framework describing similar TE interactions found globally.Uplift forcing for the extreme rainfall of each event is investigated. Unsurprisingly, quasigeostrophic uplift is found to dominate in the midlatitudes with convective processes strongest in the subtropics. Rainfall in the semiarid interior of South Africa appears to be a result of quasigeostrophically triggered convection.Investigation of TTT formation in the context of planetary waves shows that early development is sometimes associated with previous anticyclonic wave breaking south of the subcontinent, with full maturity of TTTs occurring as a potential vorticity trough approaches the continent from the west. Sensitivity to upstream wave perturbations and effects on anticyclonic wave breaking in the South Indian Ocean are also observed.
Africa lags the rest of the world in climate model development. This paper explores the potential for region-specific, process-based evaluation to promote progress in modeling and confidence assessments.
Extratropical cyclones with damaging winds can have large socioeconomic impacts when they make landfall. During the last decade, studies have identified a mesoscale transient jet, the sting jet, that descends from the tip of the hooked cloud head toward the top of the boundary layer in the dry intrusion region as a cause of strong surface winds, and especially gusts, in some cyclones. While many case studies have focused on the dynamics and characteristics of these jets, there have been few studies that assess the climatology of the associated cyclones and their importance for wind risk. Here the climatological characteristics of North Atlantic cyclones are determined in terms of the possibility that they had sting jets using a previously published sting-jet precursor diagnostic applied to ERA-Interim data over 32 extended winter seasons from 1979 to 2012. Of the 5447 cyclones tracked, 32% had the precursor (42% in the 22% of cyclones that developed explosively). Precursor storms have a more southerly and zonal storm track than storms without the precursor, and precursor storms tend to be more intense as defined by 850-hPa relative vorticity. This study also shows that precursor storms are the dominant cause of cyclone-related resolved strong wind events over the British Isles for 850-hPa wind speeds exceeding 30 m s−1. Hence, early detection of a sting-jet storm could give advance warning of enhanced wind risk. However, over continental northwestern Europe, precursor cyclone-related windstorm events occur far less often.
Africa is the continent least responsible for anthropogenic climate change but will bear a disproportionate share of its impact. This is due to both the expected severity of climate change (Collins et al., 2013) and high-economic exposure to climatic variation (Collier et al., 2008). Some of the impact can be alleviated by climate adaptation (e.g., Conway et al., 2015), but the efficacy of adaptation rests on the availability of credible climate information at the regional scales relevant for decision making (James et al., 2017). The pressing need for reliable climate information sits uncomfortably alongside large gaps in our understanding of some of the basic mechanics of the African climate system. One such gap is in our understanding of water vapor transport over the continent. Giannini et al. (2018) shows that projections of wetting in East Africa among coarse resolution climate models are associated with reductions in easterly water vapor transport across the East African Rift System (EARS) toward Central Africa. Such easterly water vapor transports are a key source of moisture for Central Africa (Dyer et al., 2017; Sorí et al., 2017; Van Der Ent & Savenije, 2013). However, the ability of models to simulate the preferred locations and mechanisms of water vapor transport is unknown, in part because we do not know what they are in reality (Giannini et al., 2018). In the Andes and Himalayas, areas of similar topographic complexity, the water vapor transports are associated with topographically constrained flows-often through Low-Level Jets (LLJs) (Acosta & Huber, 2017; Jones, 2019). Models of coarse resolution often struggle to capture the LLJs (Acosta & Huber, 2017).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.