The basic principles of incorporating high level radioactive waste into glasses, ceramics (Synroc type) and glass composites including glass ceramics are described. Current UK technology uses glass wasteforms for the products of reprocessing, although many countries are temporarily storing the ceramic spent fuel for eventual disposal. Some waste streams may be incorporated into ceramics, but difficult or legacy wastes will require the development of other wasteforms comprising composite systems of crystals and glass. The importance of processing-propertystructure (especially durability) relations in such systems over size scales from the atomic to the geological and on timescales to hundreds of thousands of years is highlighted.
Synchrotron X-ray powder diffraction experiments reveal that the transition from a magnetic intermediate spin (IS) state t 5 2g e 1 g to a nonmagnetic low-spin (LS) ground state t 6 2g in LaCoO3 normally observed when cooling, manifests itself under pressure by an anomalously low bulk compressibility of 150(2) GPa and an initially very large Co-O bond compressibility of 4.8 x 10 −3 GPa −1 which levels off near 4 GPa. The continuous depopulation of the IS state is driven by an increased crystal field splitting resulting in an effective reduction of the size of the Co 3+ cation.
Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on 25 Mg, 27 Al, 29 Si, 31 P and 39 K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al-O-P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.