There are no mucosal adjuvant formulations licensed for human use, despite protection against many mucosally-transmitted infections probably requiring immunity at the site of pathogen entry1. Polyethyleneimines (PEI) are organic polycations used as nucleic acid transfection reagents in vitro, and gene and DNA vaccine delivery vehicles in vivo2, 3. Here we show that PEI has unexpected and unusually potent mucosal adjuvant activity in conjunction with viral subunit glycoprotein antigens. Single intranasal administration of influenza HA or HSV-2 gD with PEI elicited robust protection from otherwise lethal infection, and was superior to existing experimental mucosal adjuvants. PEI formed nanoscale complexes with antigen that were taken up by antigen presenting cells in vitro and in vivo, promoted DC trafficking to draining lymph nodes and induced non-proinflammatory cytokine responses. PEI adjuvanticity required release of host dsDNA that triggered Irf-3-dependent signaling. PEI therefore merits further investigation as a mucosal adjuvant for human use.
Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the Human Immunodeficiency Virus Type-1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly-related Env surface (gp120) antigens produced in different systems: a) mammalian (293F) cells in the presence of kifunensine which impart only high mannose glycans; b) insect (Spodoptera frugiperda, Sf9) cells, which confer mainly paucimannosidic glycans; c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic™), which impart high mannose, hybrid and complex glycans without sialic acid; d) 293F cells, which impart high mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9- and wild-type mammalian cell-derived material that is predicted to impact upon ligand binding sites proximal to glycans. Modelling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4-binding and CD4–induced sites compared to those expressed in the system that does, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic acid-containing gp120 was significantly more immunogenic than the sialyated version when administered in two different adjuvants, and induced higher titres of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic acid imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations which should be considered when selecting expression systems for glycosylated antigens to be used for structure/function studies and for vaccine use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.