Cylindrospermopsin is an important cyanobacterial toxin found in water bodies worldwide. The ever-increasing and global occurrence of massive and prolonged blooms of cylindrospermopsin-producing cyanobacteria poses a potential threat to both human and ecosystem health. Its toxicity is associated with metabolic activation and may involve mechanisms that adversely affect a wide variety of targets in an organism. Cylindrospermopsin has been shown to be cytotoxic, dermatotoxic, genotoxic, hepatotoxic in vivo, developmentally toxic, and may be carcinogenic. Human exposure may occur through drinking water, during recreational activities and by consuming foods in which the toxin may have bioaccumulated. Drinking water shortages of sufficient quality coupled with growing human pressures and climate variability and change necessitate an integrated and sustainable water management program. This review presents an overview of the importance of cylindrospermopsin, its detection, toxicity, worldwide distribution, and lastly, its chemical and biological degradation and removal by natural processes and drinking water treatment processes.
This study was designed to examine the developmental dose response for all-trans retinoic acid (TRA) administered at presomite stages in mouse embryos. Previous studies using hamsters [Shenefelt (1972) Teratology 5:103-118] have shown that developmental stages corresponding to those present early on gestational day (GD) 7 in mice are most sensitive to retinoid-induced teratogenesis. Our preliminary studies showed that at this treatment time, gavage dosages of 7.5 mg/kg maternal body weight administered to C57B1/6N mice, an inbred strain, resulted in severe craniofacial malformations representing the holoprosencephaly, aprosencephaly spectrum. Additionally, in an outbred mouse strain, CD-1, exencephaly was induced by dosages of 2.5 mg/kg TRA and above. Readily detectable abnormalities of the eyes, including anophthalmia and severe microphthalmia and iridial colobomata, were induced by even lower doses cf TRA in the C57B1/6N strain. Incidences of micro/anophthalamia were 6.7%, 8.1%, 12.9%, and 32.4% at 0, 0.313, 0.625, and 1.25 mg/kg, respectively. The dosages required to induce significant incidences of exencephaly (2.5 mg/kg) and severe ocular abnormalities (1.25 mg/kg) on GD 7 in mice are approximately 50-100-fold less than those that are commonly used to examine the teratogenicity of this compound at later developmental stages in this species. The trend toward an increase in the incidence of severe ocular malformations at the lowest dose examined and the fact that subtle ocular malformations were not taken into account for this study suggest that even lower dosages may be effective.(ABSTRACT TRUNCATED AT 250 WORDS)
Supernumerary or accessory ribs (SNR), either lumbar (LR) or cervical (CR), are a common finding in standard developmental toxicology bioassays. The biological significance of these anomalies within the regulatory arena has been problematic and the subject of some debate. In rodents, the spontaneous incidence of SNR is species and strain related and ranges from <1% to >30%. Compound-induced LR are induced by a wide variety of chemical and physical agents when pregnant animals are exposed during specific gestational periods. A significant portion of the agent-induced LR may be due to maternal factors, as it has been shown that stress alone will induce LR in rodents. SNR are not isolated phenomena and signify basic alterations in the architecture of the axial skeleton. LR are associated with longer ribs, increased numbers of vertebrosternal ribs, and the presence of extra presacral vertebrae ("anteriorization"). CR are associated with reduced numbers of vertebrosternal ribs (posteriorization). It is evident that SNR are not a single anomaly, but consist of two unrelated structures: an extra rib that has a cartilaginous segment at the distal end, and an ossification site that lacks cartilage. These have a bimodal size distribution, with the population of extra ribs being significantly longer than the ossification sites, and 0.6 mm can be used as an approximate length for distinguishing the two populations in mice. Extra ribs are permanent structures in contrast to ossification sites that disappear postnatally, probably becoming part of the lateral transverse vertebral processes. SNR are also found in humans although, in contrast to laboratory species, CR are more commonly noted. SNR are associated with adverse heath effects, and CR with inducing thoracic outlet disease characterized by diminished blood flow and altered position of the ganglia and nerve roots in the area of the C7-T1 vertebrae. LR are associated with lower back pain and L4-5 degeneration. The incidence of CR is greatly reduced in adult humans as compared to fetuses, and it has been hypothesized that fetal "SNR" may be largely composed of ossification sites that disappear postnatally. The mechanisms involved in the formation of extra ribs are not understood at this time, although the fact that the early sensitive periods for their initiation during embryogenesis is coupled with the associated changes in the axial skeleton argues for their induction being due to fundamental changes in gene expression. The sum of the experimental evidence supports the idea of SNR being composed of two different structures: extra ribs that are permanent dysmorphological structures that may be induced by xenobiotics and/or maternal stress, and ossification sites that may be transient variations in the formation of the lateral processes of the vertebrae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.