Nuclear factor (NF)-kappaB and inhibitor of NF-kappaB kinase (IKK) proteins regulate many physiological processes, including the innate- and adaptive-immune responses, cell death and inflammation. Disruption of NF-kappaB or IKK function contributes to many human diseases, including cancer. However, the NF-kappaB and IKK pathways do not exist in isolation and there are many mechanisms that integrate their activity with other cell-signalling networks. This crosstalk constitutes a decision-making process that determines the consequences of NF-kappaB and IKK activation and, ultimately, cell fate.
It is only recently that the full importance of nuclear factor-κB (NF-κB) signalling to cancer development has been understood. Although much attention has focused on the upstream pathways leading to NF-κB activation, it is now becoming clear that the inhibitor of NF-κB kinases (IKKs), which regulate NF-κB activation, have many independent functions in tissue homeostasis and normal immune function that could compromise the clinical utility of IKK inhibitors. Therefore, if the NF-κB pathway is to be properly exploited as a target for both anticancer and anti-inflammatory drugs, it is appropriate to reconsider the complex roles of the individual NF-κB subunits.
The nuclear factor kappaB (NF-kappaB) transcription factor is responsive to specific cytokines and stress and is often activated in association with cell damage and growth arrest in eukaryotes. NF-kappaB is a heterodimeric protein, typically composed of 50- and 65-kilodalton subunits of the Rel family, of which RelA(p65) stimulates transcription of diverse genes. Specific cyclin-dependent kinases (CDKs) were found to regulate transcriptional activation by NF-kappaB through interactions with the coactivator p300. The transcriptional activation domain of RelA(p65) interacted with an amino-terminal region of p300 distinct from a carboxyl-terminal region of p300 required for binding to the cyclin E-Cdk2 complex. The CDK inhibitor p21 or a dominant negative Cdk2, which inhibited p300-associated cyclin E-Cdk2 activity, stimulated kappaB-dependent gene expression, which was also enhanced by expression of p300 in the presence of p21. The interaction of NF-kappaB and CDKs through the p300 and CBP coactivators provides a mechanism for the coordination of transcriptional activation with cell cycle progression.
Many cellular stimuli result in the induction of both the tumor suppressor p53 and NF-B. In contrast to activation of p53, which is associated with the induction of apoptosis, stimulation of NF-B has been shown to promote resistance to programmed cell death. These observations suggest that a regulatory mechanism must exist to integrate these opposing outcomes and coordinate this critical cellular decision-making event. Here we show that both p53 and NF-B inhibit each other's ability to stimulate gene expression and that this process is controlled by the relative levels of each transcription factor. Expression of either wild-type p53 or the RelA(p65) NF-B subunit suppresses stimulation of transcription by the other factor from a reporter plasmid in vivo. Moreover, endogenous, tumor necrosis factor alpha-activated NF-B will inhibit endogenous wild-type p53 transactivation. Following exposure to UV light, however, the converse is observed, with p53 downregulating NF-B-mediated transcriptional activation. Both p53 and RelA(p65) interact with the transcriptional coactivator proteins p300 and CREB-binding protein (CBP), and we demonstrate that these results are consistent with competition for a limiting pool of p300/CBP complexes in vivo. These observations have many implications for regulation of the transcriptional decision-making mechanisms that govern cellular processes such as apoptosis. Furthermore, they suggest a previously unrealized mechanism through which dysregulated NF-B can contribute to tumorigenesis and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.