Children 2, 2 1/2, and 3 years of age engaged in a search task in which they opened 1 of 4 doors in an occluder to retrieve a ball that had been rolled behind the occluder. The correct door was determined by a partially visible wall placed behind the occluder that stopped the motion of the unseen ball. Only the oldest group of children was able to reliably choose the correct door. All children were able to retrieve a toy that had been hidden in the same apparatus if the toy was hidden from the front by opening a door. Analysis of the younger children's errors indicated that they did not search randomly but instead used a variety of strategies. The results are consistent with the Piagetian view that the ability to use representations to guide action develops slowly over the first years of life.
The development of reaching for stationary objects was studied longitudinally in 12 human infants: 5 from the time of reach onset to 5 months of age, 5 from 6 to 20 months of age, and 2 from reach onset to 20 months of age. We used linear mixed-effects statistical modeling and found a gradual slowing of reach speed and a more rapid decrease of movement jerk with increasing age. The elbow was essentially locked during early reaching, but was prominently used by 6 months. Differences between infants were distributed normally and no evidence of different types of reachers was found. The current work combined with other longitudinal studies of infant reaching shows that the increase in skill over the first 2 years of life is seen, not by an increase in reaching speed, but by an increase in reach smoothness. By the end of the second year, the overall speed profile of reaching is approaching the typical adult profile where an early acceleration of the hand brings the hand to the region of the target with a smooth transition to a lower-speed phase where grasp is accomplished.
Because of the purported critical role of cerebellar lobule HVI in classical conditioning of the nictitating membrane response of the rabbit, we recorded extracellularly from HVI Purkinje cells (PCs) during differential conditioning. Rabbits were trained using tonal conditioned stimuli (CSs) and stimulation of the periocular region as the unconditioned stimulus (US). Many PCs responded to the US, the most frequently observed response being a burst of simple spikes. PCs in HVI showed a variety of responses to CSs that were related to conditioned responses (CRs). The most frequently observed response was an increase in simple spikes correlated with CRs. The activity of many of these cells antedated CRs by 20-200 ms. A smaller proportion of cells exhibited inhibition of simple spike activity that antedated CRs. The existence of PCs that alter their firing before CRs suggests that they may be causally involved in this behavior, and in this respect they reinforce reports that lesions of HVI or its connections disrupt nictitating membrane CRs. Although complex spike activity was not generally related to the US or to CRs, a few PCs responded in relation to CRs with only complex spikes. In demonstrating CR-related activity in cerebellar PCs, this study supports theories of cerebellar learning such as those of Marr and Albus.
The activity of neurons in the interposed and dentate nuclei of the cerebellum was investigated during differential classical conditioning of the rabbit eye blink nictitating membrane response. Forty-seven percent of the 165 cells in the study responded to the orbital stimulation used as the unconditioned stimulus (US). The latency distribution of US-elicited responses was bimodal with peaks at 7 and 19 ms. Twenty-one percent of the cells responded with short latencies to the tones used as conditioned stimuli (CSs). These cells typically responded to both the reinforced and nonreinforced CSs. Forty-one percent of the cells responded on conditioned response (CR) trials but not on trials without CRs. The average lead of the neural response to the CR was 71.4 ms. Cells that responded on CR trials were more likely to respond to the CSs, or to the CSs and the US, than cells that did not respond on CR trials. For about half of the cells that responded on CR trials the latency of response followed trial-by-trial variations of CR latency. For the remainder, the response was time-locked to CS-onset. Cells whose responses paralleled the CR may be involved in the initiation or modulation of the CR, while those whose responses were time-locked to the CS may be involved in sensory processing underlying the initiation of the movement. The pathways that may underlie the US- and CS-elicited responses are also discussed.
This article presents a mathematical model of the development of reaching that assumes that the major problem facing infants is their lack of lower level motor control and that infants learn to adjust their reaching strategies as a consequence of their previous experience and to match their current level of control. The model hypothesizes that infant reaches are a series of submovements, with the goal being to get the hand to the target in the face of errors in executed submovements. To relate actual infant reaches to this model, reaching data were decomposed into submovements, using a polynomial fitting algorithm that assumed minimum-jerk submovements. The model makes quantitative predictions about the course of development that are supported by existing results. The validity of the model's underlying assumptions was assessed by comparing the directional variability of the submovements with the variability assumed in the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.