For more than a decade, habitat mapping using biotopes (in-channel hydraulically-defi ned habitats) has underpinned aquatic conservation in the UK through (a) providing baseline information on system complexity and (b) allowing environmental and ecological change to be monitored and evaluated. The traditional method used is the subjective river habitat or corridor survey. This has recently been revised to include the fl oodplain via GeoRHS, but issues still exist concerning development of a national database due to the labour intensive nature of the data collection, subjectivity issues between samplers, temporal changes, the fuzzy nature of perceived habitats and habitat boundaries. This paper takes an innovative approach to biotope defi nition using high resolution spatial data to defi ne water surface roughness for two representative reaches of the River South Tyne, Cumbria, and the River Rede, Northumberland, UK. Data was collected using a terrestrial laser scanner (TLS) and hydraulic variability simply expressed through assigning a local standard deviation value to a set of adjacent water surface values. Statistical linkage of these data with biotope locations defi ned visually in the fi eld allowed complete mapping of the surveyed reach defi ning habitat and biotope areas to the fi ne scale resolution of the TLS data. Despite issues of data loss due to absorption and transmission through the water, the refl ected signal generated an extremely detailed and objective map of the water surface roughness, which may be compared with known biotope locations as defi ned by visual identifi cation in the fi eld. The TLS accuracy achieved in the present study is comparable with those obtained using hyperspectral imagery: with 84% of the pool/glide/marginal deadwater amalgamated biotope, 88% of riffl es, 57% of runs and 50% of the amalgamated cascade/rapid biotope successfully plotted. It is clear from this exercise that biotope distribution is more complex than previously mapped using subjective techniques, and based upon the water surface roughness delimiters presented in this study, the amalgamation of pools with glides and marginal deadwaters, riffl es with unbroken standing waves, and cascades with rapids, is proposed.
The aim of this study was to evaluate the safety and effect on clinical outcomes and biomarkers of inflammation and tissue damage of the neutrophil elastase inhibitor AZD9668 (60 mg twice daily orally for 4 weeks) in cystic fibrosis.This was a randomised, double-blind, placebo-controlled study. Primary outcome measures were sputum neutrophil count, lung function, 24-h sputum weight, BronkoTest1 diary card data and health-related quality-of-life (revised cystic fibrosis quality-of-life questionnaire). Secondary end-points included sputum neutrophil elastase activity, inflammatory biomarkers in sputum and blood, urine and plasma desmosine (an elastin degradation marker), AZD9668 levels and safety parameters (adverse events, routine haematology, biochemistry, electrocardiogram and sputum bacteriology).56 patients were randomised, of which 27 received AZD9668. There was no effect for AZD9668 on sputum neutrophil counts, neutrophil elastase activity, lung function or clinical outcomes, including quality of life. In the AZD9668 group, there was a trend towards reduction in sputum inflammatory biomarkers with statistically significant changes in interleukin-6, RANTES and urinary desmosine. The pattern of adverse events was similar between groups.Consistent reductions in sputum inflammatory biomarkers were seen in the AZD9668 group, and reduction in urinary desmosine suggests that AZD9668 impacts elastin cleavage by neutrophil elastase.
High-magnitude flood events are among the world's most widespread and significant natural hazards and play a key role in shaping river channel-floodplain morphology and riparian ecology. Development of conceptual and quantitative models for the response of bedrock-influenced dryland rivers to such floods is of growing scientific and practical importance, but in many instances, modeling efforts are hampered by a paucity of relevant field data. Here, we combined extensive aerial and field data with hydraulic modeling to document erosion, deposition, and vegetation changes that have occurred during two successive, cyclonedriven, extreme floods along a 50-km-long reach of the bedrock-influenced Sabie River in the Kruger National Park, eastern South Africa. Aerial light detection and ranging (LiDAR) data and photography obtained after extreme floods in 2000 and 2012 (discharges >4000 m 3 s-1) were used to generate digital elevation models (DEMs) and provide the boundary conditions for hydraulic modeling (flow shear stresses for three discharges up to 5000 m 3 s-1). For the Sabie River study reach as a whole, DEM differencing revealed that the 2012 floods resulted in net erosion of ~1,219,000 m 3 (~53 mm m-2). At the subreach scale, however, more complex spatial patterns of erosion, deposition, and vegetation change occurred, as largely controlled by differences in channel type (e.g., degree of bedrock and alluvial exposure) and changing hydraulic conditions (shear stresses widely >1000 N m-2 across the river around peak flow). The impact of flood sequencing and relative flood magnitude is also evident; in some subreaches, remnant islands and vegetation that survived the 2000 floods were removed during the smaller 2012 floods owing to their wider exposure to flow. These findings were synthesized to refine and extend a conceptual model of bedrock-influenced dryland river response that incorporates flood sequencing, channel type, and sediment supply influences. In particular, with some climate change projections indicating the potential for future increases in the frequency of cyclone-generated extreme floods in eastern southern Africa, the Sabie and other Kruger National Park rivers may experience additional sediment stripping and vegetation removal. Over time, such rivers may transition to a more bedrock-dominated state, with significant implications for ecological structure and function and associated ecosystem services. These findings contribute to an improved analysis of the Kruger National Park rivers in particular, but also to growing appreciation of the global diversity of dryland rivers and the relative and synergistic impacts of extreme floods.
It is not new to recognize that data from remote sensing platforms is transforming the way we characterize and analyse our environment. The ability to collect continuous data spanning spatial scales now allows geomorphological research in a data rich environment and this special issue [coming just eight years after the 2010 special issue of Earth Surface Processes and Landforms (ESPL) associated with the remote sensing of rivers] highlights the considerable research effort being made to exploit this information, for studies of geomorphic form and process. The 2010 special issue on the remote sensing of rivers noted that fluvial remote sensing articles made up some 14% of the total river related articles in ESPL. A similar review of articles up to 2017 reveals that this figure has increased to around 25% with a recent proliferation of articles utilizing satellite-based data and structure from motion photogrammetry derived data. It is interesting to note, however that many studies published to date are proof of concept, concentrating on confirming the accuracy of the remotely sensed data at the expense of generating new insights and ideas on fluvial form and function. Data is becoming ever more precise and researchers should now be concentrating on analysing these early data sets to develop increased geomorphic insight, to challenge existing paradigms and to advance geomorphic science. The prospect of this occurring is increased by the fact that many of the new remote sensed platforms allow accurate spatial data to be collected cheaply and efficiently, reducing the need for substantial research funding to advance river science. Fluvial geomorphologists have never before been in such a liberated position. As techniques and analytical skills continue to improve it is inevitable that the prediction that remotely sensed data will revolutionize our understanding of geomorphological form and process will prove true, altering our ideas on the very nature of system functioning in the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.