During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation.
The synaptonemal complex (SC) is a widely conserved structure that mediates the intimate alignment of homologous chromosomes during meiotic prophase and is required for proper homolog segregation at meiosis I. However, fundamental details of SC architecture and assembly remain poorly understood. The coiled-coil protein, Zip1, is the only component whose arrangement within the mature SC of budding yeast has been extensively characterized. It has been proposed that the Small Ubiquitin-like MOdifier, SUMO, plays a role in SC assembly by linking chromosome axes with Zip1's C termini. The role of SUMO in SC structure has not been directly tested, however, because cells lacking SUMO are inviable. Here, we provide direct evidence for SUMO's function in SC assembly. A meiotic smt3 reduction-of-function strain displays reduced sporulation, abnormal levels of crossover recombination, and diminished SC assembly. SC structures are nearly absent when induced at later meiotic time points in the smt3 reduction-of-function background. Using Structured Illumination Microscopy we furthermore determine the position of SUMO within budding yeast SC structure. In contrast to previous models that positioned SUMO near Zip1's C termini, we demonstrate that SUMO lies at the midline of SC central region proximal to Zip1's N termini, within a subdomain called the “central element”. The recently identified SUMOylated SC component, Ecm11, also localizes to the SC central element. Finally, we show that SUMO, Ecm11, and even unSUMOylatable Ecm11 exhibit Zip1-like ongoing incorporation into previously established SCs during meiotic prophase and that the relative abundance of SUMO and Ecm11 correlates with Zip1's abundance within SCs of varying Zip1 content. We discuss a model in which central element proteins are core building blocks that stabilize the architecture of SC near Zip1's N termini, and where SUMOylation may occur subsequent to the incorporation of components like Ecm11 into an SC precursor structure.
Meiotic recombination has two key functions: the faithful assortment of chromosomes into gametes and the creation of genetic diversity. Both processes require that meiotic recombination occurs between homologous chromosomes, rather than sister chromatids. Accordingly, a host of regulatory factors are activated during meiosis to distinguish sisters from homologues, suppress recombination between sister chromatids and promote the chromatids of the homologous chromosome as the preferred recombination partners. Here, we discuss the recent advances in our understanding of the mechanistic basis of meiotic recombination template choice, focusing primarily on developments in the budding yeast, Saccharomyces cerevisiae, where the regulation is currently best understood.
Synaptonemal complex (SC) assembly requires polySUMOylation of Ecm11, which promotes polymerization of Zip1, the transverse filament, whereas the N terminus of Zip1 activates Ecm11 polySUMOylation, suggesting that this positive feedback loop underpins SC assembly.
Budding yeast Pch2 protein is a widely conserved meiosis-specific protein whose role is implicated in the control of formation and displacement of meiotic crossover events. In contrast to previous studies where the function of Pch2 was implicated in the steps after meiotic double-strand breaks (DSBs) are formed, we present evidence that Pch2 is involved in meiotic DSB formation, the initiation step of meiotic recombination. The reduction of DSB formation caused by the pch2 mutation is most prominent in the sae2 mutant background, whereas the impact remains mild in the rad51 dmc1 double mutant background. The DSB reduction is further pronounced when pch2 is combined with a hypomorphic allele of SPO11. Interestingly, the level of DSB reduction is highly variable between chromosomes, with minimal impact on small chromosomes VI and III. We propose a model in which Pch2 ensures efficient formation of meiotic DSBs which is necessary for igniting the subsequent meiotic checkpoint responses that lead to proper differentiation of meiotic recombinants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.